
PyElastica
Release 0.2.4

Gazzola Lab

Jul 15, 2022

ELASTICA OVERVIEW

1 PyElastica 3
1.1 Elastica++ . 3

2 Community 5

3 Contributing 7
3.1 About . 7
3.2 Installation . 7
3.3 Workflow . 8
3.4 Discretization . 12
3.5 Example Cases . 13
3.6 Binder Tutorials . 29
3.7 Visualization . 29
3.8 Rods . 29
3.9 Rigid Body . 37
3.10 Constraints . 37
3.11 External Forces / Interactions . 41
3.12 Connections / Contact / Joints . 47
3.13 Callback Functions . 50
3.14 Time steppers . 51
3.15 Simulator . 52
3.16 Utility Functions . 54
3.17 Localized Force and Torque . 57
3.18 Code Design: Mixin and Composition . 58
3.19 Hackathon Readme . 58
3.20 Indices and tables . 62

Python Module Index 63

Index 65

i

ii

PyElastica, Release 0.2.4

Elastica is a free and open-source software project for the simulation of assemblies of slender, one-dimensional struc-
tures using Cosserat Rod theory.

More information about Elastica is available at the project website

ELASTICA OVERVIEW 1

https://cosseratrods.org

PyElastica, Release 0.2.4

2 ELASTICA OVERVIEW

CHAPTER

ONE

PYELASTICA

PyElastica is the python implementation of Elastica. The easiest way to install PyElastica is with PIP:

$ pip install pyelastica

Or download the source code from the GitHub repo

1.1 Elastica++

Elastica++ is a C++ implementation of Elastica. The expected release date for the beta version is 2022 Q2.

3

https://travis-ci.com/gazzolalab
https://codecov.io/gh/gazzolalab/PyElastica
https://pyelastica.readthedocs.io/en/latest/?badge=latest
https://github.com/GazzolaLab/PyElastica

PyElastica, Release 0.2.4

4 Chapter 1. PyElastica

CHAPTER

TWO

COMMUNITY

We mainly use git-issue to communicate the roadmap, updates, helps, and bug fixes. If you have problem using PyE-
lastica, check if similar issue is reported in git-issue.

We also opened gitter channel for short and immediate feedbacks.

5

https://gitter.im/PyElastica/community
https://github.com/GazzolaLab/PyElastica/issues
https://github.com/GazzolaLab/PyElastica/issues

PyElastica, Release 0.2.4

6 Chapter 2. Community

CHAPTER

THREE

CONTRIBUTING

If you are interested to contribute, please read contribution-guide first.

3.1 About

Elastica is a free and open-source software project for the simulation of assemblies of slender one-dimensional bodies
using Cosserat Rod theory. It has been designed to be modular, extensible and easy to use. It allows the user to define
a collection of Cosserat rods subject to both external (i.e. gravity, friction, etc. . .) and internal (i.e. muscle torque)
forces. Rods account for self-contact and can be combined to create assemblies of rods, which can then be used to
model increasingly complex system.

For more information on Elastica and Cosserat rods, see the project website https://cosseratrods.org

Elastica is developed and maintained by the Gazzola Lab at the University of Illinois at Urbana-Champaign. For more
information on the projects we work on, see https://mattia-lab.com.

Funding for the development of Elastica has been provided by:

3.2 Installation

3.2.1 Instruction

PyElastica requires Python 3.5 - 3.8, which needs to be installed prior to using PyElastica. For information on installing
Python, see here. If you are interested in using a package manager like Conda, see here.

Note: Python version above 3.8 is tested only in Ubuntu and Mac OS. For Windows 10, some of the dependencies
were not yet compatible.

7

https://github.com/GazzolaLab/PyElastica/blob/master/CONTRIBUTING.md
https://cosseratrods.org
https://mattia-lab.com
https://realpython.com/installing-python/
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html

PyElastica, Release 0.2.4

The easiest way to install PyElastica is with pip:

$ pip install pyelastica

You can also download the source code for PyElastica directly from GitHub.

3.2.2 Dependencies

The core of PyElastica is developed using:

• numpy

• numba

• scipy

• tqdm

• matplotlib (visualization)

Above packages will be installed along with PyElastica if you used pip to install. If you have directly downloaded the
source code, you must install these packages separately.

3.3 Workflow

When using PyElastica, users will setup a simulation in which they define a system of rods, define initial and boundary
conditions on the rods, run the simulation, and then post-process the results. Here, we outline a typical template of
using PyElastica.

Important: A note on notation: Like other FEA packages such as Abaqus, PyElastica does not enforce units. This
means that you are required to make sure that all units for your input variables are consistent. When in doubt, SI units
are always safe, however, if you have a very small length scale (∼ nm), then you may need to rescale your units to avoid
needing prohibitively small time steps and/or roundoff errors.

from elastica.wrappers import (
BaseSystemCollection,
Connections,
Constraints,
Forcing,
CallBacks

)

class SystemSimulator(
BaseSystemCollection,
Constraints, # Enabled to use boundary conditions 'OneEndFixedBC'
Forcing, # Enabled to use forcing 'GravityForces'
Connections, # Enabled to use FixedJoint
CallBacks # Enabled to use callback

):
pass

This simply combines all the wrappers previously imported together. If a wrapper is not needed for the simulation, it
does not need to be added here.

8 Chapter 3. Contributing

https://github.com/GazzolaLab/PyElastica

PyElastica, Release 0.2.4

Available components are:

Component Note
BaseSystemCollection Required for all simulator.
Constraints

Forcing

Connections

CallBacks

Note: We adopted a composition and mixin design paradigm in building elastica. The detail of the implementation is
not important in using the package, but we left some references to read here.

from elastica.rod.cosserat_rod import CosseratRod

Create rod
direction = np.array([0.0, 0.0, 1.0])
normal = np.array([0.0, 1.0, 0.0])
rod1 = CosseratRod.straight_rod(

n_elements=50, # number of elements
start=np.array([0.0, 0.0, 0.0]), # Starting position of first node in␣

→˓rod
direction=direction, # Direction the rod extends
normal=normal, # normal vector of rod
base_length=0.5, # original length of rod (m)
base_radius=10e-2, # original radius of rod (m)
density=1e3, # density of rod (kg/m^3)
nu=1e-3, # Energy dissipation of rod
youngs_modulus=1e7, # Elastic Modulus (Pa)
poisson_ratio=0.5, # Poisson Ratio

)
rod2 = CosseratRod.straight_rod(

n_elements=50, # number of elements
start=np.array([0.0, 0.0, 0.5]), # Starting position of first node in␣

→˓rod
direction=direction, # Direction the rod extends
normal=normal, # normal vector of rod
base_length=0.5, # original length of rod (m)
base_radius=10e-2, # original radius of rod (m)
density=1e3, # density of rod (kg/m^3)
nu=1e-3, # Energy dissipation of rod
youngs_modulus=1e7, # Elastic Modulus (Pa)
poisson_ratio=0.5, # Poisson Ratio

)

Add rod to SystemSimulator
SystemSimulator.append(rod1)
SystemSimulator.append(rod2)

3.3. Workflow 9

PyElastica, Release 0.2.4

This can be repeated to create multiple rods. Supported geometries are listed in API documentation.

Note: The number of element (n_elements) and base_length determines the spatial discretization dx. More detail
discussion is included here.

Now that we have added all our rods to SystemSimulator, we need to apply the relevant boundary conditions. See
this page for in-depth explanations and documentation.

As a simple example, to fix one end of a rod, we use the OneEndFixedBC boundary condition (which we imported in
step 1 and apply it to the rod. Here we will be fixing the 0th node as well as the 0th element.

from elastica.boundary_conditions import OneEndFixedBC

SystemSimulator.constrain(rod1).using(
OneEndFixedBC, # Displacement BC being applied
constrained_position_idx=(0,), # Node number to apply BC
constrained_director_idx=(0,) # Element number to apply BC

)

We have now fixed one end of the rod while leaving the other end free. We can also apply forces to free end using the
EndpointForces. We can also add more complex forcings, such as friction, gravity, or torque throughout the rod.
See this page for in-depth explanations and documentation.

from elastica.external_forces import EndpointForces

#Define 1x3 array of the applied forces
origin_force = np.array([0.0, 0.0, 0.0])
end_force = np.array([-15.0, 0.0, 0.0])
SystemSimulator.add_forcing_to(rod1).using(

EndpointForces, # Traction BC being applied
origin_force, # Force vector applied at first node
end_force, # Force vector applied at last node
ramp_up_time=final_time / 2.0 # Ramp up time

)

One last condition we can define is the connections between rods. See this page for in-depth explanations and docu-
mentation.

from elastica.connections import FixedJoint

Connect rod 1 and rod 2. '_connect_idx' specifies the node number that
the connection should be applied to. You are specifying the index of a
list so you can use -1 to access the last node.
SystemSimulator.connect(

first_rod = rod1,
second_rod = rod2,
first_connect_idx = -1, # Connect to the last node of the first rod.
second_connect_idx = 0 # Connect to first node of the second rod.
).using(

FixedJoint, # Type of connection between rods
k = 1e5, # Spring constant of force holding rods together (F = k*x)
nu = 0, # Energy dissipation of joint
kt = 5e3 # Rotational stiffness of rod to avoid rods twisting
)

10 Chapter 3. Contributing

PyElastica, Release 0.2.4

If you want to know what happens to the rod during the course of the simulation, you must collect data during the
simulation. Here, we demonstrate how the callback function can be defined to export the data you need. There is a
base class CallBackBaseClass that can help with this.

Note: PyElastica does not automatically saves the simulation result. If you do not define a callback function, you
will only have the final state of the system at the end of the simulation.

from elastica.callback_functions import CallBackBaseClass

MyCallBack class is derived from the base call back class.
class MyCallBack(CallBackBaseClass):

def __init__(self, step_skip: int, callback_params):
CallBackBaseClass.__init__(self)
self.every = step_skip
self.callback_params = callback_params

This function is called every time step
def make_callback(self, system, time, current_step: int):

if current_step % self.every == 0:
Save time, step number, position, orientation and velocity
self.callback_params["time"].append(time)
self.callback_params["step"].append(current_step)
self.callback_params["position"].append(system.position_collection.copy())
self.callback_params["directors"].append(system.director_collection.copy())
self.callback_params["velocity"].append(system.velocity_collection.copy())
return

Create dictionary to hold data from callback function
callback_data_rod1, callback_data_rod2 = defaultdict(list), defaultdict(list)

Add MyCallBack to SystemSimulator for each rod telling it how often to save data (step_
→˓skip)
SystemSimulator.collect_diagnostics(rod1).using(

MyCallBack, step_skip=1000, callback_params=callback_data_rod1)
SystemSimulator.collect_diagnostics(rod2).using(

MyCallBack, step_skip=1000, callback_params=callback_data_rod2)

You can define different callback functions for different rods and also have different data outputted at different time
step intervals depending on your needs. See this page for more in-depth documentation.

Now that we have finished defining our rods, the different boundary conditions and connections between them, and
how often we want to save data, we have finished setting up the simulation. We now need to finalize the simulator by
calling

SystemSimulator.finalize()

This goes through and collects all the rods and applied conditions, preparing the system for the simulation.

With our system now ready to be run, we need to define which time stepping algorithm to use. Currently, we suggest
using the position Verlet algorithm. We also need to define how much time we want to simulate as well as either the
time step (dt) or the number of total time steps we want to take. Once we have defined these things, we can run the
simulation by calling integrate(), which will start the simulation.

We are still actively testing different integration and time-stepping techniques,

3.3. Workflow 11

PyElastica, Release 0.2.4

PositionVerlet is the best default at this moment.

from elastica.timestepper.symplectic_steppers import PositionVerlet
from elastica.timestepper import integrate

timestepper = PositionVerlet()
final_time = 10 # seconds
dt = 1e-5 # seconds
total_steps = int(final_time / dt)
integrate(timestepper, SystemSimulator, final_time, total_steps)

More documentation on timestepper and integrator is included here

Once the simulation ends, it is time to analyze the data. If you defined a callback function, the data you outputted
in available there (i.e. callback_data_rod1), otherwise you can access the final configuration of your system
through your rod objects. For example, if you want the final position of one of your rods, you can get it from rod1.
position_collection[:].

3.4 Discretization

To help get you started building initial intuition about PyElastica, here are some general rules of thumb to follow.

Important: These are based on general observations of how simulations tend to behave and are not guaranteed to
always hold. Particularly for choosing dx and dt, it is important to perform a separate convergence study for your
specific case.

3.4.1 Number of elements per rod

Generally, the more flexible your rod, the more elements you need. It is important to always perform a convergence
test for your simulation, however, 30-50 elements per rod is a good starting point.

3.4.2 Choosing your dx and dt

Generally you will set your dx and then choose a stable dt. Your dx will be a combination of your problems length scale
and the number of elements you want. Recall that units can be rescaled as long as they are consistent. If you have have
a small rod, selecting a dx on the order of nm without scaling is 1e-9. This small value can cause numerical issues, so
it is better to rescale your units so that nm ∼ 𝑂(1).

When choosing your time step, there are a number of different conditions that can affect your choice. The most important
consideration is that the time stepping algorithm remain stable. As a useful heuristic, we have found that dt = 0.01 dx
𝑠/𝑚 tends to yield stable time steps, but depending on your problem this may not hold. If you wish to be able to
resolve the propagation of different waves, then you need to make sure your dt is able to capture their propagation
(𝑑𝑡 = 𝑑𝑥

√︀
𝜌/𝐺 for shear waves or 𝑑𝑡 = 𝑑𝑥

√︀
𝜌/𝐸 for flexural waves).

12 Chapter 3. Contributing

PyElastica, Release 0.2.4

3.4.3 Run time scaling

PyElastica will scale linearly with the number of time steps, so if you halve your time step, your simulation will take
twice as long to finish.

The algorithms that PyElastica is based on scale linearly with the number of elements. However, due to overhead from
calling functions in Python, PyElastica does not currently have a strong dependence on the number of nodes. Doubling
the number of nodes may only lead to a 10-20% increase in run time. While this means you can decrease your dx
without a large run time penalty, remember that you also need to adjust your dt, which will affect the run time.

Adding additional interactions with the environment, such as friction or gravity, will increase run time. Most of these
interactions only have a small effect on run time except for rod collision and/or self-intersection. As implemented, these
are expensive routines (𝑂(𝑁2)) and should be avoided if possible as they will substantially lengthen your run time.

We are working to add parallel and HPC capabilities to PyElastica. If you are interested in helping us implement these
changes, let us know.

3.5 Example Cases

Example cases are the demonstration of physical example with known analytical solution or well-studied phenomenon.
Each cases follows the recommended workflow, shown here. Feel free to use them as an initial template to build your
own case study.

3.5.1 Axial Stretching

1 """ Axial stretching test-case
2

3 Assume we have a rod lying aligned in the x-direction, with high internal
4 damping.
5

6 We fix one end (say, the left end) of the rod to a wall. On the right
7 end we apply a force directed axially pulling the rods tip. Linear
8 theory (assuming small displacements) predict that the net displacement
9 experienced by the rod tip is x = FL/AE where the symbols carry their

10 usual meaning (the rod is just a linear spring). We compare our results
11 with the above result.
12

13 We can "improve" the theory by having a better estimate for the rod's
14 spring constant by assuming that it equilibriates under the new position,
15 with
16 x = F * (L + x)/ (A * E)
17 which results in x = (F*l)/(A*E - F). Our rod reaches equilibrium wrt to
18 this position.
19

20 Note that if the damping is not high, the rod oscillates about the eventual
21 resting position (and this agrees with the theoretical predictions without
22 any damping : we should see the rod oscillating simple-harmonically in time).
23

24 isort:skip_file
25 """
26 # FIXME without appending sys.path make it more generic
27 import sys

(continues on next page)

3.5. Example Cases 13

PyElastica, Release 0.2.4

(continued from previous page)

28

29 sys.path.append("../../") # isort:skip
30

31 # from collections import defaultdict
32

33 import numpy as np
34 from matplotlib import pyplot as plt
35

36 from elastica import *
37

38

39 class StretchingBeamSimulator(BaseSystemCollection, Constraints, Forcing, CallBacks):
40 pass
41

42

43 stretch_sim = StretchingBeamSimulator()
44 final_time = 20.0
45

46 # Options
47 PLOT_FIGURE = True
48 SAVE_FIGURE = False
49 SAVE_RESULTS = False
50

51 # setting up test params
52 n_elem = 19
53 start = np.zeros((3,))
54 direction = np.array([1.0, 0.0, 0.0])
55 normal = np.array([0.0, 1.0, 0.0])
56 base_length = 1.0
57 base_radius = 0.025
58 base_area = np.pi * base_radius ** 2
59 density = 1000
60 nu = 2.0
61 youngs_modulus = 1e4
62 # For shear modulus of 1e4, nu is 99!
63 poisson_ratio = 0.5
64 shear_modulus = youngs_modulus / (poisson_ratio + 1.0)
65

66 stretchable_rod = CosseratRod.straight_rod(
67 n_elem,
68 start,
69 direction,
70 normal,
71 base_length,
72 base_radius,
73 density,
74 nu,
75 youngs_modulus,
76 shear_modulus=shear_modulus,
77)
78

79 stretch_sim.append(stretchable_rod)

(continues on next page)

14 Chapter 3. Contributing

PyElastica, Release 0.2.4

(continued from previous page)

80 stretch_sim.constrain(stretchable_rod).using(
81 OneEndFixedBC, constrained_position_idx=(0,), constrained_director_idx=(0,)
82)
83

84 end_force_x = 1.0
85 end_force = np.array([end_force_x, 0.0, 0.0])
86 stretch_sim.add_forcing_to(stretchable_rod).using(
87 EndpointForces, 0.0 * end_force, end_force, ramp_up_time=1e-2
88)
89

90 # Add call backs
91 class AxialStretchingCallBack(CallBackBaseClass):
92 """
93 Call back function for continuum snake
94 """
95

96 def __init__(self, step_skip: int, callback_params: dict):
97 CallBackBaseClass.__init__(self)
98 self.every = step_skip
99 self.callback_params = callback_params

100

101 def make_callback(self, system, time, current_step: int):
102

103 if current_step % self.every == 0:
104

105 self.callback_params["time"].append(time)
106 # Collect only x
107 self.callback_params["position"].append(
108 system.position_collection[0, -1].copy()
109)
110 return
111

112

113 recorded_history = defaultdict(list)
114 stretch_sim.collect_diagnostics(stretchable_rod).using(
115 AxialStretchingCallBack, step_skip=200, callback_params=recorded_history
116)
117

118 stretch_sim.finalize()
119 timestepper = PositionVerlet()
120 # timestepper = PEFRL()
121

122 dl = base_length / n_elem
123 dt = 0.01 * dl
124 total_steps = int(final_time / dt)
125 print("Total steps", total_steps)
126 integrate(timestepper, stretch_sim, final_time, total_steps)
127

128 if PLOT_FIGURE:
129 # First-order theory with base-length
130 expected_tip_disp = end_force_x * base_length / base_area / youngs_modulus
131 # First-order theory with modified-length, gives better estimates

(continues on next page)

3.5. Example Cases 15

PyElastica, Release 0.2.4

(continued from previous page)

132 expected_tip_disp_improved = (
133 end_force_x * base_length / (base_area * youngs_modulus - end_force_x)
134)
135

136 fig = plt.figure(figsize=(10, 8), frameon=True, dpi=150)
137 ax = fig.add_subplot(111)
138 ax.plot(recorded_history["time"], recorded_history["position"], lw=2.0)
139 ax.hlines(base_length + expected_tip_disp, 0.0, final_time, "k", "dashdot", lw=1.0)
140 ax.hlines(
141 base_length + expected_tip_disp_improved, 0.0, final_time, "k", "dashed", lw=2.0
142)
143 if SAVE_FIGURE:
144 fig.savefig("axial_stretching.pdf")
145 plt.show()
146

147 if SAVE_RESULTS:
148 import pickle
149

150 filename = "axial_stretching_data.dat"
151 file = open(filename, "wb")
152 pickle.dump(stretchable_rod, file)
153 file.close()

3.5.2 Timoshenko

1 __doc__ = """Timoshenko beam validation case, for detailed explanation refer to
2 Gazzola et. al. R. Soc. 2018 section 3.4.3 """
3

4 import numpy as np
5 import sys
6

7 # FIXME without appending sys.path make it more generic
8 sys.path.append("../../")
9 from elastica import *

10 from examples.TimoshenkoBeamCase.timoshenko_postprocessing import plot_timoshenko
11

12

13 class TimoshenkoBeamSimulator(BaseSystemCollection, Constraints, Forcing):
14 pass
15

16

17 timoshenko_sim = TimoshenkoBeamSimulator()
18 final_time = 5000
19

20 # Options
21 PLOT_FIGURE = True
22 SAVE_FIGURE = False
23 SAVE_RESULTS = False
24 ADD_UNSHEARABLE_ROD = True
25

(continues on next page)

16 Chapter 3. Contributing

PyElastica, Release 0.2.4

(continued from previous page)

26 # setting up test params
27 n_elem = 100
28 start = np.zeros((3,))
29 direction = np.array([0.0, 0.0, 1.0])
30 normal = np.array([0.0, 1.0, 0.0])
31 base_length = 3.0
32 base_radius = 0.25
33 base_area = np.pi * base_radius ** 2
34 density = 5000
35 nu = 0.1
36 E = 1e6
37 # For shear modulus of 1e4, nu is 99!
38 poisson_ratio = 99
39 shear_modulus = E / (poisson_ratio + 1.0)
40

41 shearable_rod = CosseratRod.straight_rod(
42 n_elem,
43 start,
44 direction,
45 normal,
46 base_length,
47 base_radius,
48 density,
49 nu,
50 E,
51 shear_modulus=shear_modulus,
52)
53

54 timoshenko_sim.append(shearable_rod)
55 timoshenko_sim.constrain(shearable_rod).using(
56 OneEndFixedBC, constrained_position_idx=(0,), constrained_director_idx=(0,)
57)
58

59 end_force = np.array([-15.0, 0.0, 0.0])
60 timoshenko_sim.add_forcing_to(shearable_rod).using(
61 EndpointForces, 0.0 * end_force, end_force, ramp_up_time=final_time / 2.0
62)
63

64

65 if ADD_UNSHEARABLE_ROD:
66 # Start into the plane
67 unshearable_start = np.array([0.0, -1.0, 0.0])
68 shear_modulus = E / (-0.7 + 1.0)
69 unshearable_rod = CosseratRod.straight_rod(
70 n_elem,
71 unshearable_start,
72 direction,
73 normal,
74 base_length,
75 base_radius,
76 density,
77 nu,

(continues on next page)

3.5. Example Cases 17

PyElastica, Release 0.2.4

(continued from previous page)

78 E,
79 # Unshearable rod needs G -> inf, which is achievable with -ve poisson ratio
80 shear_modulus=shear_modulus,
81)
82

83 timoshenko_sim.append(unshearable_rod)
84 timoshenko_sim.constrain(unshearable_rod).using(
85 OneEndFixedBC, constrained_position_idx=(0,), constrained_director_idx=(0,)
86)
87 timoshenko_sim.add_forcing_to(unshearable_rod).using(
88 EndpointForces, 0.0 * end_force, end_force, ramp_up_time=final_time / 2.0
89)
90

91 timoshenko_sim.finalize()
92 timestepper = PositionVerlet()
93 # timestepper = PEFRL()
94

95 dl = base_length / n_elem
96 dt = 0.01 * dl
97 total_steps = int(final_time / dt)
98 print("Total steps", total_steps)
99 integrate(timestepper, timoshenko_sim, final_time, total_steps)

100

101 if PLOT_FIGURE:
102 plot_timoshenko(shearable_rod, end_force, SAVE_FIGURE, ADD_UNSHEARABLE_ROD)
103

104 if SAVE_RESULTS:
105 import pickle
106

107 filename = "Timoshenko_beam_data.dat"
108 file = open(filename, "wb")
109 pickle.dump(shearable_rod, file)
110 file.close()

3.5.3 Butterfly

1 # FIXME without appending sys.path make it more generic
2 import sys
3

4 sys.path.append("../")
5 sys.path.append("../../")
6

7 # from collections import defaultdict
8 import numpy as np
9 from matplotlib import pyplot as plt

10 from matplotlib.colors import to_rgb
11

12

13 from elastica import *
14 from elastica.utils import MaxDimension

(continues on next page)

18 Chapter 3. Contributing

PyElastica, Release 0.2.4

(continued from previous page)

15

16

17 class ButterflySimulator(BaseSystemCollection, CallBacks):
18 pass
19

20

21 butterfly_sim = ButterflySimulator()
22 final_time = 40.0
23

24 # Options
25 PLOT_FIGURE = True
26 SAVE_FIGURE = True
27 SAVE_RESULTS = True
28 ADD_UNSHEARABLE_ROD = False
29

30 # setting up test params
31 # FIXME : Doesn't work with elements > 10 (the inverse rotate kernel fails)
32 n_elem = 4 # Change based on requirements, but be careful
33 n_elem += n_elem % 2
34 half_n_elem = n_elem // 2
35

36 origin = np.zeros((3, 1))
37 angle_of_inclination = np.deg2rad(45.0)
38

39 # in-plane
40 horizontal_direction = np.array([0.0, 0.0, 1.0]).reshape(-1, 1)
41 vertical_direction = np.array([1.0, 0.0, 0.0]).reshape(-1, 1)
42

43 # out-of-plane
44 normal = np.array([0.0, 1.0, 0.0])
45

46 total_length = 3.0
47 base_radius = 0.25
48 base_area = np.pi * base_radius ** 2
49 density = 5000
50 nu = 0.0
51 youngs_modulus = 1e4
52 poisson_ratio = 0.5
53 shear_modulus = youngs_modulus / (poisson_ratio + 1.0)
54

55 positions = np.empty((MaxDimension.value(), n_elem + 1))
56 dl = total_length / n_elem
57

58 # First half of positions stem from slope angle_of_inclination
59 first_half = np.arange(half_n_elem + 1.0).reshape(1, -1)
60 positions[..., : half_n_elem + 1] = origin + dl * first_half * (
61 np.cos(angle_of_inclination) * horizontal_direction
62 + np.sin(angle_of_inclination) * vertical_direction
63)
64 positions[..., half_n_elem:] = positions[
65 ..., half_n_elem : half_n_elem + 1
66] + dl * first_half * (

(continues on next page)

3.5. Example Cases 19

PyElastica, Release 0.2.4

(continued from previous page)

67 np.cos(angle_of_inclination) * horizontal_direction
68 - np.sin(angle_of_inclination) * vertical_direction
69)
70

71 butterfly_rod = CosseratRod.straight_rod(
72 n_elem,
73 start=origin.reshape(3),
74 direction=np.array([0.0, 0.0, 1.0]),
75 normal=normal,
76 base_length=total_length,
77 base_radius=base_radius,
78 density=density,
79 nu=nu,
80 youngs_modulus=youngs_modulus,
81 shear_modulus=shear_modulus,
82 position=positions,
83)
84

85 butterfly_sim.append(butterfly_rod)
86

87 # Add call backs
88 class VelocityCallBack(CallBackBaseClass):
89 """
90 Call back function for continuum snake
91 """
92

93 def __init__(self, step_skip: int, callback_params: dict):
94 CallBackBaseClass.__init__(self)
95 self.every = step_skip
96 self.callback_params = callback_params
97

98 def make_callback(self, system, time, current_step: int):
99

100 if current_step % self.every == 0:
101

102 self.callback_params["time"].append(time)
103 # Collect x
104 self.callback_params["position"].append(system.position_collection.copy())
105 # Collect energies as well
106 self.callback_params["te"].append(system.compute_translational_energy())
107 self.callback_params["re"].append(system.compute_rotational_energy())
108 self.callback_params["se"].append(system.compute_shear_energy())
109 self.callback_params["be"].append(system.compute_bending_energy())
110 return
111

112

113 recorded_history = defaultdict(list)
114 # initially record history
115 recorded_history["time"].append(0.0)
116 recorded_history["position"].append(butterfly_rod.position_collection.copy())
117 recorded_history["te"].append(butterfly_rod.compute_translational_energy())
118 recorded_history["re"].append(butterfly_rod.compute_rotational_energy())

(continues on next page)

20 Chapter 3. Contributing

PyElastica, Release 0.2.4

(continued from previous page)

119 recorded_history["se"].append(butterfly_rod.compute_shear_energy())
120 recorded_history["be"].append(butterfly_rod.compute_bending_energy())
121

122 butterfly_sim.collect_diagnostics(butterfly_rod).using(
123 VelocityCallBack, step_skip=100, callback_params=recorded_history
124)
125

126

127 butterfly_sim.finalize()
128 timestepper = PositionVerlet()
129 # timestepper = PEFRL()
130

131 dt = 0.01 * dl
132 total_steps = int(final_time / dt)
133 print("Total steps", total_steps)
134 integrate(timestepper, butterfly_sim, final_time, total_steps)
135

136 if PLOT_FIGURE:
137 # Plot the histories
138 fig = plt.figure(figsize=(5, 4), frameon=True, dpi=150)
139 ax = fig.add_subplot(111)
140 positions = recorded_history["position"]
141 # record first position
142 first_position = positions.pop(0)
143 ax.plot(first_position[2, ...], first_position[0, ...], "r--", lw=2.0)
144 n_positions = len(positions)
145 for i, pos in enumerate(positions):
146 alpha = np.exp(i / n_positions - 1)
147 ax.plot(pos[2, ...], pos[0, ...], "b", lw=0.6, alpha=alpha)
148 # final position is also separate
149 last_position = positions.pop()
150 ax.plot(last_position[2, ...], last_position[0, ...], "k--", lw=2.0)
151 # don't block
152 fig.show()
153

154 # Plot the energies
155 energy_fig = plt.figure(figsize=(5, 4), frameon=True, dpi=150)
156 energy_ax = energy_fig.add_subplot(111)
157 times = np.asarray(recorded_history["time"])
158 te = np.asarray(recorded_history["te"])
159 re = np.asarray(recorded_history["re"])
160 be = np.asarray(recorded_history["be"])
161 se = np.asarray(recorded_history["se"])
162

163 energy_ax.plot(times, te, c=to_rgb("xkcd:reddish"), lw=2.0, label="Translations")
164 energy_ax.plot(times, re, c=to_rgb("xkcd:bluish"), lw=2.0, label="Rotation")
165 energy_ax.plot(times, be, c=to_rgb("xkcd:burple"), lw=2.0, label="Bend")
166 energy_ax.plot(times, se, c=to_rgb("xkcd:goldenrod"), lw=2.0, label="Shear")
167 energy_ax.plot(times, te + re + be + se, c="k", lw=2.0, label="Total energy")
168 energy_ax.legend()
169 # don't block
170 energy_fig.show()

(continues on next page)

3.5. Example Cases 21

PyElastica, Release 0.2.4

(continued from previous page)

171

172 if SAVE_FIGURE:
173 fig.savefig("butterfly.png")
174 energy_fig.savefig("energies.png")
175

176 plt.show()
177

178 if SAVE_RESULTS:
179 import pickle
180

181 filename = "butterfly_data.dat"
182 file = open(filename, "wb")
183 pickle.dump(butterfly_rod, file)
184 file.close()

3.5.4 Helical Buckling

1 __doc__ = """Helical buckling validation case, for detailed explanation refer to
2 Gazzola et. al. R. Soc. 2018 section 3.4.1 """
3

4 import numpy as np
5 import sys
6

7 # FIXME without appending sys.path make it more generic
8 sys.path.append("../../")
9 from elastica import *

10 from examples.HelicalBucklingCase.helicalbuckling_postprocessing import (
11 plot_helicalbuckling,
12)
13

14

15 class HelicalBucklingSimulator(BaseSystemCollection, Constraints, Forcing):
16 pass
17

18

19 helicalbuckling_sim = HelicalBucklingSimulator()
20

21 # Options
22 PLOT_FIGURE = True
23 SAVE_FIGURE = True
24 SAVE_RESULTS = False
25

26 # setting up test params
27 n_elem = 100
28 start = np.zeros((3,))
29 direction = np.array([0.0, 0.0, 1.0])
30 normal = np.array([0.0, 1.0, 0.0])
31 base_length = 100.0
32 base_radius = 0.35
33 base_area = np.pi * base_radius ** 2

(continues on next page)

22 Chapter 3. Contributing

PyElastica, Release 0.2.4

(continued from previous page)

34 density = 1.0 / (base_area)
35 nu = 0.01
36 E = 1e6
37 slack = 3
38 number_of_rotations = 27
39 # For shear modulus of 1e5, nu is 99!
40 poisson_ratio = 9
41 shear_modulus = E / (poisson_ratio + 1.0)
42 shear_matrix = np.repeat(
43 shear_modulus * np.identity((3))[:, :, np.newaxis], n_elem, axis=2
44)
45 temp_bend_matrix = np.zeros((3, 3))
46 np.fill_diagonal(temp_bend_matrix, [1.345, 1.345, 0.789])
47 bend_matrix = np.repeat(temp_bend_matrix[:, :, np.newaxis], n_elem - 1, axis=2)
48

49 shearable_rod = CosseratRod.straight_rod(
50 n_elem,
51 start,
52 direction,
53 normal,
54 base_length,
55 base_radius,
56 density,
57 nu,
58 E,
59 shear_modulus=shear_modulus,
60)
61 # TODO: CosseratRod has to be able to take shear matrix as input, we should change it as␣

→˓done below
62

63 shearable_rod.shear_matrix = shear_matrix
64 shearable_rod.bend_matrix = bend_matrix
65

66

67 helicalbuckling_sim.append(shearable_rod)
68 helicalbuckling_sim.constrain(shearable_rod).using(
69 HelicalBucklingBC,
70 constrained_position_idx=(0, -1),
71 constrained_director_idx=(0, -1),
72 twisting_time=500,
73 slack=slack,
74 number_of_rotations=number_of_rotations,
75)
76

77 helicalbuckling_sim.finalize()
78 timestepper = PositionVerlet()
79 shearable_rod.velocity_collection[..., int((n_elem) / 2)] += np.array([0, 1e-6, 0.0])
80 # timestepper = PEFRL()
81

82 final_time = 10500.0
83 dl = base_length / n_elem
84 dt = 1e-3 * dl

(continues on next page)

3.5. Example Cases 23

PyElastica, Release 0.2.4

(continued from previous page)

85 total_steps = int(final_time / dt)
86 print("Total steps", total_steps)
87 integrate(timestepper, helicalbuckling_sim, final_time, total_steps)
88

89 if PLOT_FIGURE:
90 plot_helicalbuckling(shearable_rod, SAVE_FIGURE)
91

92 if SAVE_RESULTS:
93 import pickle
94

95 filename = "HelicalBuckling_data.dat"
96 file = open(filename, "wb")
97 pickle.dump(shearable_rod, file)
98 file.close()

3.5.5 Continuum Snake

1 __doc__ = """Snake friction case from X. Zhang et. al. Nat. Comm. 2021"""
2

3 import sys
4 import os
5 import numpy as np
6

7 sys.path.append("../../")
8 from elastica import *
9

10 from examples.ContinuumSnakeCase.continuum_snake_postprocessing import (
11 plot_snake_velocity,
12 plot_video,
13 compute_projected_velocity,
14 plot_curvature,
15)
16

17

18 class SnakeSimulator(BaseSystemCollection, Constraints, Forcing, CallBacks):
19 pass
20

21

22 def run_snake(
23 b_coeff, PLOT_FIGURE=False, SAVE_FIGURE=False, SAVE_VIDEO=False, SAVE_RESULTS=False
24):
25 # Initialize the simulation class
26 snake_sim = SnakeSimulator()
27

28 # Simulation parameters
29 period = 2
30 final_time = (11.0 + 0.01) * period
31 time_step = 8e-6
32 total_steps = int(final_time / time_step)
33 rendering_fps = 60

(continues on next page)

24 Chapter 3. Contributing

PyElastica, Release 0.2.4

(continued from previous page)

34 step_skip = int(1.0 / (rendering_fps * time_step))
35

36 # setting up test params
37 n_elem = 50
38 start = np.zeros((3,))
39 direction = np.array([0.0, 0.0, 1.0])
40 normal = np.array([0.0, 1.0, 0.0])
41 base_length = 0.35
42 base_radius = base_length * 0.011
43 density = 1000
44 nu = 1e-4
45 E = 1e6
46 poisson_ratio = 0.5
47 shear_modulus = E / (poisson_ratio + 1.0)
48

49 shearable_rod = CosseratRod.straight_rod(
50 n_elem,
51 start,
52 direction,
53 normal,
54 base_length,
55 base_radius,
56 density,
57 nu,
58 E,
59 shear_modulus=shear_modulus,
60)
61

62 snake_sim.append(shearable_rod)
63

64 # Add gravitational forces
65 gravitational_acc = -9.80665
66 snake_sim.add_forcing_to(shearable_rod).using(
67 GravityForces, acc_gravity=np.array([0.0, gravitational_acc, 0.0])
68)
69

70 # Add muscle torques
71 wave_length = b_coeff[-1]
72 snake_sim.add_forcing_to(shearable_rod).using(
73 MuscleTorques,
74 base_length=base_length,
75 b_coeff=b_coeff[:-1],
76 period=period,
77 wave_number=2.0 * np.pi / (wave_length),
78 phase_shift=0.0,
79 rest_lengths=shearable_rod.rest_lengths,
80 ramp_up_time=period,
81 direction=normal,
82 with_spline=True,
83)
84

85 # Add friction forces

(continues on next page)

3.5. Example Cases 25

PyElastica, Release 0.2.4

(continued from previous page)

86 origin_plane = np.array([0.0, -base_radius, 0.0])
87 normal_plane = normal
88 slip_velocity_tol = 1e-8
89 froude = 0.1
90 mu = base_length / (period * period * np.abs(gravitational_acc) * froude)
91 kinetic_mu_array = np.array(
92 [mu, 1.5 * mu, 2.0 * mu]
93) # [forward, backward, sideways]
94 static_mu_array = np.zeros(kinetic_mu_array.shape)
95 snake_sim.add_forcing_to(shearable_rod).using(
96 AnisotropicFrictionalPlane,
97 k=1.0,
98 nu=1e-6,
99 plane_origin=origin_plane,

100 plane_normal=normal_plane,
101 slip_velocity_tol=slip_velocity_tol,
102 static_mu_array=static_mu_array,
103 kinetic_mu_array=kinetic_mu_array,
104)
105

106 # Add call backs
107 class ContinuumSnakeCallBack(CallBackBaseClass):
108 """
109 Call back function for continuum snake
110 """
111

112 def __init__(self, step_skip: int, callback_params: dict):
113 CallBackBaseClass.__init__(self)
114 self.every = step_skip
115 self.callback_params = callback_params
116

117 def make_callback(self, system, time, current_step: int):
118

119 if current_step % self.every == 0:
120

121 self.callback_params["time"].append(time)
122 self.callback_params["step"].append(current_step)
123 self.callback_params["position"].append(
124 system.position_collection.copy()
125)
126 self.callback_params["velocity"].append(
127 system.velocity_collection.copy()
128)
129 self.callback_params["avg_velocity"].append(
130 system.compute_velocity_center_of_mass()
131)
132

133 self.callback_params["center_of_mass"].append(
134 system.compute_position_center_of_mass()
135)
136 self.callback_params["curvature"].append(system.kappa.copy())
137

(continues on next page)

26 Chapter 3. Contributing

PyElastica, Release 0.2.4

(continued from previous page)

138 return
139

140 pp_list = defaultdict(list)
141 snake_sim.collect_diagnostics(shearable_rod).using(
142 ContinuumSnakeCallBack, step_skip=step_skip, callback_params=pp_list
143)
144

145 snake_sim.finalize()
146

147 timestepper = PositionVerlet()
148 integrate(timestepper, snake_sim, final_time, total_steps)
149

150 if PLOT_FIGURE:
151 filename_plot = "continuum_snake_velocity.png"
152 plot_snake_velocity(pp_list, period, filename_plot, SAVE_FIGURE)
153 plot_curvature(pp_list, shearable_rod.rest_lengths, period, SAVE_FIGURE)
154

155 if SAVE_VIDEO:
156 filename_video = "continuum_snake.mp4"
157 plot_video(
158 pp_list,
159 video_name=filename_video,
160 fps=rendering_fps,
161 xlim=(0, 4),
162 ylim=(-1, 1),
163)
164

165 if SAVE_RESULTS:
166 import pickle
167

168 filename = "continuum_snake.dat"
169 file = open(filename, "wb")
170 pickle.dump(pp_list, file)
171 file.close()
172

173 # Compute the average forward velocity. These will be used for optimization.
174 [_, _, avg_forward, avg_lateral] = compute_projected_velocity(pp_list, period)
175

176 return avg_forward, avg_lateral, pp_list
177

178

179 if __name__ == "__main__":
180

181 # Options
182 PLOT_FIGURE = True
183 SAVE_FIGURE = True
184 SAVE_VIDEO = True
185 SAVE_RESULTS = False
186 CMA_OPTION = False
187

188 if CMA_OPTION:
189 import cma

(continues on next page)

3.5. Example Cases 27

PyElastica, Release 0.2.4

(continued from previous page)

190

191 SAVE_OPTIMIZED_COEFFICIENTS = False
192

193 def optimize_snake(spline_coefficient):
194 [avg_forward, _, _] = run_snake(
195 spline_coefficient,
196 PLOT_FIGURE=False,
197 SAVE_FIGURE=False,
198 SAVE_VIDEO=False,
199 SAVE_RESULTS=False,
200)
201 return -avg_forward
202

203 # Optimize snake for forward velocity. In cma.fmin first input is function
204 # to be optimized, second input is initial guess for coefficients you are␣

→˓optimizing
205 # for and third input is standard deviation you initially set.
206 optimized_spline_coefficients = cma.fmin(optimize_snake, 7 * [0], 0.5)
207

208 # Save the optimized coefficients to a file
209 filename_data = "optimized_coefficients.txt"
210 if SAVE_OPTIMIZED_COEFFICIENTS:
211 assert filename_data != "", "provide a file name for coefficients"
212 np.savetxt(filename_data, optimized_spline_coefficients, delimiter=",")
213

214 else:
215 # Add muscle forces on the rod
216 if os.path.exists("optimized_coefficients.txt"):
217 t_coeff_optimized = np.genfromtxt(
218 "optimized_coefficients.txt", delimiter=","
219)
220 else:
221 wave_length = 1.0
222 t_coeff_optimized = np.array(
223 [3.4e-3, 3.3e-3, 4.2e-3, 2.6e-3, 3.6e-3, 3.5e-3]
224)
225 t_coeff_optimized = np.hstack((t_coeff_optimized, wave_length))
226

227 # run the simulation
228 [avg_forward, avg_lateral, pp_list] = run_snake(
229 t_coeff_optimized, PLOT_FIGURE, SAVE_FIGURE, SAVE_VIDEO, SAVE_RESULTS
230)
231

232 print("average forward velocity:", avg_forward)
233 print("average forward lateral:", avg_lateral)

28 Chapter 3. Contributing

PyElastica, Release 0.2.4

3.6 Binder Tutorials

We have created several Jupyter notebooks and Python scripts to help get users started with using PyElastica. The
Jupyter notebooks are available on Binder, allowing you to try out some of the tutorials without having to install
PyElastica.

Note: Additional examples are also available in the examples folder of PyElastica’s Github repo.

3.7 Visualization

3.7.1 Matplotlib

If you wish to visualize your system, make sure you define your callback function to output all necessary data. You can
either plot your data using a python package such as matplotlib, or any rendering software that you choose. Note,
many of the visualization scripts in the examples folders require ffmpeg (be sure to install with h264 libraries).

3.7.2 POVray

For high-quality visualization, we suggest POVray. See this tutorial for examples of different ways of visualizing the
system.

3.7.3 Rhino

For interactive visualization and rendering, we use Rhino + Grasshopper. See this extension.

3.7.4 VTK

The current version does not have VTK-export capability, although we plan to include this feature later.

3.8 Rods

Base class for rods

class elastica.rod.rod_base.RodBase
Base class for all rods.

3.6. Binder Tutorials 29

https://mybinder.org/v2/gh/GazzolaLab/PyElastica/master?filepath=examples%2FBinder%2F0_PyElastica_Tutorials_Overview.ipynb
https://github.com/GazzolaLab/PyElastica/tree/master/examples
https://www.ffmpeg.org/
http://povray.com
https://github.com/GazzolaLab/PyElastica/tree/master/examples/Visualization
https://www.rhino3d.com/
https://github.com/skim0119/PyElastica-to-Rhino

PyElastica, Release 0.2.4

Notes

All new rod classes must be derived from this RodBase class.

3.8.1 Cosserat Rod

On Nodes (+1) On Elements
(n_elements)

On Voronoi (-1)

Geometry position

director, tangents
length, rest_length
radius
volume
dilatation

rest voronoi length
voronoi dilatation

Kinematics

velocity
acceleration
external forces
damping forces

angular velocity (omega)
angular acceleration
(alpha)
mass second moment of
inertia

+inverse
dilatation rates
external torques
damping torques

Elasticity internal forces

shear matrix (modulus)
shear/stretch strain
(sigma)
rest shear/stretch strain
internal torques
internal stress

bend matrix (modulus)
bend/twist strain (kappa)
rest bend/twist strain
internal couple

Material mass

density
dissipation constant
(force, torque)

Rod classes and implementation details

30 Chapter 3. Contributing

PyElastica, Release 0.2.4

class elastica.rod.cosserat_rod.CosseratRod(n_elements, position, velocity, omega, acceleration,
angular_acceleration, directors, radius,
mass_second_moment_of_inertia,
inv_mass_second_moment_of_inertia, shear_matrix,
bend_matrix, density, volume, mass,
dissipation_constant_for_forces,
dissipation_constant_for_torques, internal_forces,
internal_torques, external_forces, external_torques,
lengths, rest_lengths, tangents, dilatation, dilatation_rate,
voronoi_dilatation, rest_voronoi_lengths, sigma, kappa,
rest_sigma, rest_kappa, internal_stress, internal_couple,
damping_forces, damping_torques)

Cosserat Rod class. This is the preferred class for rods because it is derived from some of the essential base
classes.

Attributes

n_elems: int The number of elements of the rod.

position_collection: numpy.ndarray 2D (dim, n_nodes) array containing data with ‘float’ type.
Array containing node position vectors.

velocity_collection: numpy.ndarray 2D (dim, n_nodes) array containing data with ‘float’ type.
Array containing node velocity vectors.

acceleration_collection: numpy.ndarray 2D (dim, n_nodes) array containing data with ‘float’
type. Array containing node acceleration vectors.

omega_collection: numpy.ndarray 2D (dim, n_elems) array containing data with ‘float’ type.
Array containing element angular velocity vectors.

alpha_collection: numpy.ndarray 2D (dim, n_elems) array containing data with ‘float’ type.
Array contining element angular acceleration vectors.

director_collection: numpy.ndarray 3D (dim, dim, n_elems) array containing data with ‘float’
type. Array containing element director matrices.

rest_lengths: numpy.ndarray 1D (n_elems) array containing data with ‘float’ type. Rod ele-
ment lengths at rest configuration.

density: numpy.ndarray 1D (n_elems) array containing data with ‘float’ type. Rod elements
densities.

volume: numpy.ndarray 1D (n_elems) array containing data with ‘float’ type. Rod element
volumes.

mass: numpy.ndarray 1D (n_nodes) array containing data with ‘float’ type. Rod node masses.
Note that masses are stored on the nodes, not on elements.

mass_second_moment_of_inertia: numpy.ndarray 3D (dim, dim, n_elems) array containing
data with ‘float’ type. Rod element mass second moment of interia.

inv_mass_second_moment_of_inertia: numpy.ndarray 3D (dim, dim, n_elems) array con-
taining data with ‘float’ type. Rod element inverse mass moment of inertia.

dissipation_constant_for_forces: numpy.ndarray 1D (n_elems) array containing data with
‘float’ type. Rod element dissipation coefficient (nu).

dissipation_constant_for_torques: numpy.ndarray 1D (n_elems) array containing data with
‘float’ type. Rod element dissipation (nu). Can be customized by passing ‘nu_for_torques’.

3.8. Rods 31

PyElastica, Release 0.2.4

rest_voronoi_lengths: numpy.ndarray 1D (n_voronoi) array containing data with ‘float’ type.
Rod lengths on the voronoi domain at the rest configuration.

internal_forces: numpy.ndarray 2D (dim, n_nodes) array containing data with ‘float’ type.
Rod node internal forces. Note that internal forces are stored on the node, not on elements.

internal_torques: numpy.ndarray 2D (dim, n_elems) array containing data with ‘float’ type.
Rod element internal torques.

external_forces: numpy.ndarray 2D (dim, n_nodes) array containing data with ‘float’ type.
External forces acting on rod nodes.

external_torques: numpy.ndarray 2D (dim, n_elems) array containing data with ‘float’ type.
External torques acting on rod elements.

lengths: numpy.ndarray 1D (n_elems) array containing data with ‘float’ type. Rod element
lengths.

tangents: numpy.ndarray 2D (dim, n_elems) array containing data with ‘float’ type. Rod ele-
ment tangent vectors.

radius: numpy.ndarray 1D (n_elems) array containing data with ‘float’ type. Rod element
radius.

dilatation: numpy.ndarray 1D (n_elems) array containing data with ‘float’ type. Rod element
dilatation.

voronoi_dilatation: numpy.ndarray 1D (n_voronoi) array containing data with ‘float’ type.
Rod dilatation on voronoi domain.

dilatation_rate: numpy.ndarray 1D (n_elems) array containing data with ‘float’ type. Rod
element dilatation rates.

classmethod straight_rod(n_elements, start, direction, normal, base_length, base_radius, density, nu,
youngs_modulus, *args, **kwargs)

Cosserat rod constructor for straight-rod geometry.

Parameters

n_elements [int] Number of element. Must be greater than 3. Generarally recommended to
start with 40-50, and adjust the resolution.

start [NDArray[3, float]] Starting coordinate in 3D

direction [NDArray[3, float]] Direction of the rod in 3D

normal [NDArray[3, float]] Normal vector of the rod in 3D

base_length [float] Total length of the rod

base_radius [float] Uniform radius of the rod

density [float] Density of the rod

nu [float] Damping coefficient for Rayleigh damping

youngs_modulus [float] Young’s modulus

*args [tuple] Additional arguments should be passed as keyward arguments. (e.g.
shear_modulus, poisson_ratio)

**kwargs [dict, optional] The “position” and/or “directors” can be overrided by pass-
ing “position” and “directors” argument. Remember, the shape of the “position” is
(3,n_elements+1) and the shape of the “directors” is (3,3,n_elements).

Returns

32 Chapter 3. Contributing

PyElastica, Release 0.2.4

CosseratRod

Notes

Since we expect the Cosserat Rod to simulate soft rod, Poisson’s ratio is set to 0.5 by default. It is possible
to give additional argument “shear_modulus” or “poisson_ratio” to specify extra modulus.

compute_translational_energy()
Compute total translational energy of the rod at the instance.

compute_rotational_energy()
Compute total rotational energy of the rod at the instance.

compute_velocity_center_of_mass()
Compute velocity center of mass of the rod at the instance.

compute_position_center_of_mass()
Compute position center of mass of the rod at the instance.

compute_bending_energy()
Compute total bending energy of the rod at the instance.

compute_shear_energy()
Compute total shear energy of the rod at the instance.

compute_link(type_of_additional_segment='next_tangent')
See Knot Theory (Mixin) for the detail.

Parameters

type_of_additional_segment [str] Determines the method to compute new segments (ele-
ments) added to the rod. Valid inputs are “next_tangent”, “end_to_end”, “net_tangent”,
otherwise program uses the center line.

compute_twist()
See Knot Theory (Mixin) for the detail.

compute_writhe(type_of_additional_segment='next_tangent')
See Knot Theory (Mixin) for the detail.

Parameters

type_of_additional_segment [str] Determines the method to compute new segments (ele-
ments) added to the rod. Valid inputs are “next_tangent”, “end_to_end”, “net_tangent”,
otherwise program uses the center line.

Knot Theory (Mixin)

This script is for computing the link-writhe-twist (LWT) of a rod using the method from Klenin & Langowski 2000
paper. Algorithms are adapted from section S2 of Charles et. al. PRL 2019 paper.

Following example cases includes computing LWT quantities to study the bifurcation:

• Example case (PlectonemesCase)

• Example case (SolenoidCase)

The details discussion is included in N Charles et. al. PRL (2019).

class elastica.rod.knot_theory.KnotTheoryCompatibleProtocol(*args, **kwds)
Required properties to use KnotTheory mixin

3.8. Rods 33

https://github.com/GazzolaLab/PyElastica/blob/master/examples/RodContactCase/RodSelfContact/PlectonemesCase/plectoneme_case.py
https://github.com/GazzolaLab/PyElastica/blob/master/examples/RodContactCase/RodSelfContact/SolenoidsCase/solenoid_case.py
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.208003

PyElastica, Release 0.2.4

class elastica.rod.knot_theory.KnotTheory
This mixin should be used in RodBase-derived class that satisfies KnotCompatibleProtocol. The theory behind
this module is based on the method from Klenin & Langowski 2000 paper.

KnotTheory can be mixed with any rod-class based on RodBase:

class MyRod(RodBase, KnotTheory):
def __init__(self):

super().__init__()
rod = MyRod(...)

total_twist = rod.compute_twist()
total_link = rod.compute_link()

There are few alternative way of handling edge-condition in computing Link and Writhe. Here, we provide three
methods: “next_tangent”, “end_to_end”, and “net_tangent”. The default type_of_additional_segment is set to
“next_tangent.”

type_of_additional_segment Description
next_tangent

Adds a two new point at the begining and end of the
center line.
Distance of these points are given in
segment_length.
Direction of these points are computed using the rod
tangents at
the begining and end.

end_to_end

Adds a two new point at the begining and end of the
center line.
Distance of these points are given in
segment_length.
Direction of these points are computed using the rod
node end
positions.

net_tangent

Adds a two new point at the begining and end of the
center line.
Distance of these points are given in
segment_length. Direction of
these points are point wise avarege of nodes at the
first and
second half of the rod.

compute_twist()
See Knot Theory (Mixin) for the detail.

compute_writhe(type_of_additional_segment='next_tangent')
See Knot Theory (Mixin) for the detail.

34 Chapter 3. Contributing

PyElastica, Release 0.2.4

Parameters

type_of_additional_segment [str] Determines the method to compute new segments (ele-
ments) added to the rod. Valid inputs are “next_tangent”, “end_to_end”, “net_tangent”,
otherwise program uses the center line.

compute_link(type_of_additional_segment='next_tangent')
See Knot Theory (Mixin) for the detail.

Parameters

type_of_additional_segment [str] Determines the method to compute new segments (ele-
ments) added to the rod. Valid inputs are “next_tangent”, “end_to_end”, “net_tangent”,
otherwise program uses the center line.

elastica.rod.knot_theory.compute_twist(center_line, normal_collection)
Compute the twist of a rod, using center_line and normal collection.

Methods used in this function is adapted from method 2a Klenin & Langowski 2000 paper.

Warning: If center line is straight, although the normals of each element is pointing different direction
computed twist will be zero.

Typical runtime of this function is longer than simulation steps. While we provide a function to compute topo-
logical quantities at every timesteps, we highly recommend to compute LWT during the post-processing stage.:

import elastica
...
normal_collection = director_collection[:,0,...] # shape of director (time, 3, 3, n_
→˓elems)
elastica.compute_twist(

center_line, # shape (time, 3, n_nodes)
normal_collection # shape (time, 3, n_elems)

)

Parameters

center_line [numpy.ndarray] 3D (time, 3, n_nodes) array containing data with ‘float’ type. Time
history of rod node positions.

normal_collection [numpy.ndarray] 3D (time, 3, n_elems) array containing data with ‘float’
type. Time history of rod elements normal direction.

Returns

total_twist [numpy.ndarray]

local_twist [numpy.ndarray]

elastica.rod.knot_theory.compute_link(center_line, normal_collection, radius, segment_length,
type_of_additional_segment)

This function computes the total link history of a rod.

Equations used are from method 1a from Klenin & Langowski 2000 paper.

Typical runtime of this function is longer than simulation steps. While we provide a function to compute topo-
logical quantities at every timesteps, we highly recommend to compute LWT during the post-processing stage.:

3.8. Rods 35

PyElastica, Release 0.2.4

import elastica
...
normal_collection = director_collection[:,0,...] # shape of director (time, 3, 3, n_
→˓elems)
elastica.compute_link(

center_line, # shape (time, 3, n_nodes)
normal_collection, # shape (time 3, n_elems)
radius, # shape (time, n_elems)
segment_length,
type_of_additional_segment="next_tangent"

)

Parameters

center_line [numpy.ndarray] 3D (time, 3, n_nodes) array containing data with ‘float’ type. Time
history of rod node positions.

normal_collection [numpy.ndarray] 3D (time, 3, n_elems) array containing data with ‘float’
type. Time history of rod elements normal direction.

radius [numpy.ndarray] 2D (time, n_elems) array containing data with ‘float’ type. Time history
of rod element radius.

segment_length [float] Length of added segments.

type_of_additional_segment [str] Determines the method to compute new segments (elements)
added to the rod. Valid inputs are “next_tangent”, “end_to_end”, “net_tangent”, otherwise
program uses the center line.

Returns

total_link [numpy.ndarray]

elastica.rod.knot_theory.compute_writhe(center_line, segment_length, type_of_additional_segment)
This function computes the total writhe history of a rod.

Equations used are from method 1a from Klenin & Langowski 2000 paper.

Typical runtime of this function is longer than simulation steps. While we provide a function to compute topo-
logical quantities at every timesteps, we highly recommend to compute LWT during the post-processing stage.:

import elastica
...
elastica.compute_writhe(

center_line, # shape (time, 3, n_nodes)
segment_length,
type_of_additional_segment="next_tangent"

)

Parameters

center_line [numpy.ndarray] 3D (time, 3, n_nodes) array containing data with ‘float’ type. Time
history of rod node positions.

segment_length [float] Length of added segments.

type_of_additional_segment [str] Determines the method to compute new segments (elements)
added to the rod. Valid inputs are “next_tangent”, “end_to_end”, “net_tangent”, otherwise
program uses the center line.

36 Chapter 3. Contributing

PyElastica, Release 0.2.4

Returns

total_writhe [numpy.ndarray]

3.9 Rigid Body

type
Cylinder
Sphere

class elastica.rigidbody.rigid_body.RigidBodyBase
Base class for rigid body classes.

Notes

All rigid body class should inherit this base class.

compute_position_center_of_mass()
Return positional center of mass

compute_translational_energy()
Return translational energy

compute_rotational_energy()
Return rotational energy

class elastica.rigidbody.cylinder.Cylinder(start, direction, normal, base_length, base_radius, density)

class elastica.rigidbody.sphere.Sphere(center, base_radius, density)

3.10 Constraints

Built-in boundary condition implementationss

3.10.1 Description

Constraints are equivalent to displacement boundary condition.

Available Constraint

ConstraintBase Base class for constraint and displacement boundary
condition implementation.

FreeBC Boundary condition template.
OneEndFixedBC This boundary condition class fixes one end of the rod.
FixedConstraint This boundary condition class fixes the specified node

or orientations.
HelicalBucklingBC This is the boundary condition class for Helical Buckling

case in Gazzola et.
continues on next page

3.9. Rigid Body 37

PyElastica, Release 0.2.4

Table 1 – continued from previous page
FreeRod Deprecated 0.2.1: Same implementation as FreeBC
OneEndFixedRod Deprecated 0.2.1: Same implementation as OneEnd-

FixedBC

Compatibility

Constraint / Boundary Condition Rod Rigid Body
FreeBC
OneEndFixedBC
FixedConstraint
HelicalBucklingBC

3.10.2 Examples

Note: PyElastica package provides basic built-in constraints, and we expect use to adapt their own boundary condition
from our examples.

Customizing boundary condition examples:

• Flexible Swinging Pendulum

• Plectonemes

• Solenoids

3.10.3 Built-in Constraints

class elastica.boundary_conditions.ConstraintBase(*args, **kwargs)
Bases: abc.ABC

Base class for constraint and displacement boundary condition implementation.

Notes

Constraint class must inherit BaseConstraint class.

Attributes

system [RodBase or RigidBodyBase] get system (rod or rigid body) reference

node_indices [None or numpy.ndarray]

element_indices [None or numpy.ndarray]

property system: Union[Type[elastica.rod.rod_base.RodBase],
Type[elastica.rigidbody.rigid_body.RigidBodyBase]]

get system (rod or rigid body) reference

Return type Union[Type[RodBase], Type[RigidBodyBase]]

property constrained_position_idx: Optional[numpy.ndarray]
get position-indices passed to “using”

38 Chapter 3. Contributing

https://github.com/GazzolaLab/PyElastica/tree/master/examples/FlexibleSwingingPendulumCase
https://github.com/GazzolaLab/PyElastica/tree/master/examples/RodContactCase/RodSelfContact/PlectonemesCase
https://github.com/GazzolaLab/PyElastica/tree/master/examples/RodContactCase/RodSelfContact/SolenoidsCase

PyElastica, Release 0.2.4

Return type Optional[ndarray]

property constrained_director_idx: Optional[numpy.ndarray]
get director-indices passed to “using”

Return type Optional[ndarray]

abstract constrain_values(rod, time)
Constrain values (position and/or directors) of a rod object.

Parameters

rod [Union[Type[RodBase], Type[RigidBodyBase]]] Rod or rigid-body object.

time [float] The time of simulation.

:rtype: [py:obj:None]

abstract constrain_rates(rod, time)
Constrain rates (velocity and/or omega) of a rod object.

Parameters

rod [Union[Type[RodBase], Type[RigidBodyBase]]] Rod or rigid-body object.

time [float] The time of simulation.

:rtype: [py:obj:None]

class elastica.boundary_conditions.FreeBC(**kwargs)
Boundary condition template.

class elastica.boundary_conditions.OneEndFixedBC(fixed_position, fixed_directors, **kwargs)
This boundary condition class fixes one end of the rod. Currently, this boundary condition fixes position and
directors at the first node and first element of the rod.

Example case (timoshenko)

Examples

How to fix one ends of the rod:

>>> simulator.constrain(rod).using(
... OneEndFixedBC,
... constrained_position_idx=(0,),
... constrained_director_idx=(0,)
...)

__init__(fixed_position, fixed_directors, **kwargs)
Initialization of the constraint. Any parameter passed to ‘using’ will be available in kwargs.

Parameters

constrained_position_idx [tuple] Tuple of position-indices that will be constrained

constrained_director_idx [tuple] Tuple of director-indices that will be constrained

class elastica.boundary_conditions.FixedConstraint(*fixed_data, **kwargs)
This boundary condition class fixes the specified node or orientations. Index can be passed to fix either or both the
position or the director. Constraining position is equivalent to setting 0 translational DOF. Constraining director
is equivalent to setting 0 rotational DOF.

3.10. Constraints 39

https://github.com/GazzolaLab/PyElastica/blob/master/examples/TimoshenkoBeamCase/timoshenko.py

PyElastica, Release 0.2.4

Examples

How to fix two ends of the rod:

>>> simulator.constrain(rod).using(
... FixedConstraint,
... constrained_position_idx=(0,1,-2,-1),
... constrained_director_idx=(0,-1)
...)

How to pin the middle of the rod (10th node), without constraining the rotational DOF.

>>> simulator.constrain(rod).using(
... FixedConstraint,
... constrained_position_idx=(10)
...)

__init__(*fixed_data, **kwargs)
Initialization of the constraint. Any parameter passed to ‘using’ will be available in kwargs.

Parameters

constrained_position_idx [tuple] Tuple of position-indices that will be constrained

constrained_director_idx [tuple] Tuple of director-indices that will be constrained

class elastica.boundary_conditions.HelicalBucklingBC(position_start, position_end, director_start,
director_end, twisting_time, slack,
number_of_rotations, **kwargs)

This is the boundary condition class for Helical Buckling case in Gazzola et. al. RSoS (2018). The applied
boundary condition is twist and slack on to the first and last nodes and elements of the rod.

Example case (helical buckling)

Attributes

twisting_time: float Time to complete twist.

final_start_position: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Po-
sition of first node of rod after twist completed.

final_end_position: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Posi-
tion of last node of rod after twist completed.

ang_vel: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Angular velocity
of rod during twisting time.

shrink_vel: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Shrink veloc-
ity of rod during twisting time.

final_start_directors: numpy.ndarray 3D (dim, dim, 1) array containing data with ‘float’ type.
Directors of first element of rod after twist completed.

final_end_directors: numpy.ndarray 3D (dim, dim, 1) array containing data with ‘float’ type.
Directors of last element of rod after twist completed.

__init__(position_start, position_end, director_start, director_end, twisting_time, slack,
number_of_rotations, **kwargs)

Helical Buckling initializer

Parameters

40 Chapter 3. Contributing

https://github.com/GazzolaLab/PyElastica/blob/master/examples/HelicalBucklingCase/helicalbuckling.py

PyElastica, Release 0.2.4

position_start [numpy.ndarray] 2D (dim, 1) array containing data with ‘float’ type. Initial
position of first node.

position_end [numpy.ndarray] 2D (dim, 1) array containing data with ‘float’ type. Initial
position of last node.

director_start [numpy.ndarray] 3D (dim, dim, blocksize) array containing data with ‘float’
type. Initial director of first element.

director_end [numpy.ndarray] 3D (dim, dim, blocksize) array containing data with ‘float’
type. Initial director of last element.

twisting_time [float] Time to complete twist.

slack [float] Slack applied to rod.

number_of_rotations [float] Number of rotations applied to rod.

class elastica.boundary_conditions.FreeRod(**kwargs)
Deprecated 0.2.1: Same implementation as FreeBC

class elastica.boundary_conditions.OneEndFixedRod(fixed_position, fixed_directors, **kwargs)
Deprecated 0.2.1: Same implementation as OneEndFixedBC

3.11 External Forces / Interactions

3.11.1 Description

External force and environmental interaction are represented as force/torque boundary condition at different location.

Available Forcing

Numba implementation module for boundary condition implementations that apply external forces to the rod.

NoForces This is the base class for external forcing boundary con-
ditions applied to rod-like objects.

EndpointForces This class applies constant forces on the endpoint nodes.
GravityForces This class applies a constant gravitational force to the

entire rod.
UniformForces This class applies a uniform force to the entire rod.
UniformTorques This class applies a uniform torque to the entire rod.
MuscleTorques This class applies muscle torques along the body.
EndpointForcesSinusoidal This class applies sinusoidally varying forces to the ends

of a rod.

3.11. External Forces / Interactions 41

PyElastica, Release 0.2.4

Available Interaction

Numba implementation module containing interactions between a rod and its environment.

AnisotropicFrictionalPlane This anisotropic friction plane class is for computing
anisotropic friction forces on rods.

InteractionPlane The interaction plane class computes the plane reaction
force on a rod-like object.

SlenderBodyTheory This slender body theory class is for flow-structure in-
teraction problems.

Compatibility

Forcing Rod Rigid Body
NoForces
EndpointForces
GravityForces
UniformForces
UniformTorques
MuscleTorques
EndpointForcesSinusoidal

Interaction Rod Rigid Body
AnisotropicFrictionalPlane
InteractionPlane
SlenderBodyTheory

3.11.2 Built-in External Forces

Numba implementation module for boundary condition implementations that apply external forces to the rod.

class elastica.external_forces.NoForces
This is the base class for external forcing boundary conditions applied to rod-like objects.

Notes

Every new external forcing class must be derived from NoForces class.

__init__()
NoForces class does not need any input parameters.

class elastica.external_forces.EndpointForces(start_force, end_force, ramp_up_time)
This class applies constant forces on the endpoint nodes.

Attributes

start_force: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Force applied
to first node of the rod-like object.

end_force: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Force applied
to last node of the rod-like object.

42 Chapter 3. Contributing

PyElastica, Release 0.2.4

ramp_up_time: float Applied forces are ramped up until ramp up time.

__init__(start_force, end_force, ramp_up_time)

Parameters

start_force: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Force ap-
plied to first node of the rod-like object.

end_force: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Force ap-
plied to last node of the rod-like object.

ramp_up_time: float Applied forces are ramped up until ramp up time.

class elastica.external_forces.GravityForces(acc_gravity=array([0.0, - 9.80665, 0.0]))
This class applies a constant gravitational force to the entire rod.

Attributes

acc_gravity: numpy.ndarray 1D (dim) array containing data with ‘float’ type. Gravitational
acceleration vector.

__init__(acc_gravity=array([0.0, - 9.80665, 0.0]))

Parameters

acc_gravity: numpy.ndarray 1D (dim) array containing data with ‘float’ type. Gravita-
tional acceleration vector.

class elastica.external_forces.UniformForces(force, direction=array([0.0, 0.0, 0.0]))
This class applies a uniform force to the entire rod.

Attributes

force: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Total force applied
to a rod-like object.

__init__(force, direction=array([0.0, 0.0, 0.0]))

Parameters

force: float Force magnitude applied to a rod-like object.

direction: numpy.ndarray 1D (dim) array containing data with ‘float’ type. Direction in
which force applied.

class elastica.external_forces.UniformTorques(torque, direction=array([0.0, 0.0, 0.0]))
This class applies a uniform torque to the entire rod.

Attributes

torque: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Total torque ap-
plied to a rod-like object.

__init__(torque, direction=array([0.0, 0.0, 0.0]))

Parameters

torque: float Torque magnitude applied to a rod-like object.

direction: numpy.ndarray 1D (dim) array containing data with ‘float’ type. Direction in
which torque applied.

3.11. External Forces / Interactions 43

PyElastica, Release 0.2.4

class elastica.external_forces.MuscleTorques(base_length, b_coeff, period, wave_number, phase_shift,
direction, rest_lengths, ramp_up_time,
with_spline=False)

This class applies muscle torques along the body. The applied muscle torques are treated as applied external
forces. This class can apply muscle torques as a traveling wave with a beta spline or only as a traveling wave.
For implementation details refer to Gazzola et. al. RSoS. (2018).

Attributes

direction: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Muscle torque
direction.

angular_frequency: float Angular frequency of traveling wave.

wave_number: float Wave number of traveling wave.

phase_shift: float Phase shift of traveling wave.

ramp_up_time: float Applied muscle torques are ramped up until ramp up time.

my_spline: numpy.ndarray 1D (blocksize) array containing data with ‘float’ type. Generated
spline.

__init__(base_length, b_coeff, period, wave_number, phase_shift, direction, rest_lengths, ramp_up_time,
with_spline=False)

Parameters

base_length: float Rest length of the rod-like object.

b_coeff: nump.ndarray 1D array containing data with ‘float’ type. Beta coefficients for
beta-spline.

period: float Period of traveling wave.

wave_number: float Wave number of traveling wave.

phase_shift: float Phase shift of traveling wave.

direction: numpy.ndarray 1D (dim) array containing data with ‘float’ type. Muscle torque
direction.

ramp_up_time: float Applied muscle torques are ramped up until ramp up time.

with_spline: boolean Option to use beta-spline.

class elastica.external_forces.EndpointForcesSinusoidal(start_force_mag, end_force_mag,
ramp_up_time=0.0,
tangent_direction=array([0, 0, 1]),
normal_direction=array([0, 1, 0]))

This class applies sinusoidally varying forces to the ends of a rod. Forces are applied in a plane, which is defined
by the tangent_direction and normal_direction.

44 Chapter 3. Contributing

PyElastica, Release 0.2.4

Notes

In order to see example how to use this class, see joint examples.

Attributes

start_force_mag: float Magnitude of the force that is applied to the start of the rod (node 0).

end_force_mag: float Magnitude of the force that is applied to the end of the rod (node -1).

ramp_up_time: float Applied forces are applied in the normal direction until time reaches
ramp_up_time.

normal_direction: np.ndarray An array (3,) contains type float. This is the normal direction
of the rod.

roll_direction: np.ndarray An array (3,) contains type float. This is the direction perpendicular
to rod tangent, and rod normal.

__init__(start_force_mag, end_force_mag, ramp_up_time=0.0, tangent_direction=array([0, 0, 1]),
normal_direction=array([0, 1, 0]))

Parameters

start_force_mag: float Magnitude of the force that is applied to the start of the rod (node
0).

end_force_mag: float Magnitude of the force that is applied to the end of the rod (node -1).

ramp_up_time: float Applied muscle torques are ramped up until ramp up time.

tangent_direction: np.ndarray An array (3,) contains type float. This is the tangent direc-
tion of the rod, or normal of the plane that forces applied.

normal_direction: np.ndarray An array (3,) contains type float. This is the normal direc-
tion of the rod.

3.11.3 Built-in Environment Interactions

Numba implementation module containing interactions between a rod and its environment.

class elastica.interaction.AnisotropicFrictionalPlane(k, nu, plane_origin, plane_normal,
slip_velocity_tol, static_mu_array,
kinetic_mu_array)

This anisotropic friction plane class is for computing anisotropic friction forces on rods. A detailed explanation
of the implemented equations can be found in Gazzola et al. RSoS. (2018).

Attributes

k: float Stiffness coefficient between the plane and the rod-like object.

nu: float Dissipation coefficient between the plane and the rod-like object.

plane_origin: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Origin of
the plane.

plane_normal: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. The nor-
mal vector of the plane.

slip_velocity_tol: float Velocity tolerance to determine if the element is slipping or not.

static_mu_array: numpy.ndarray 1D (3,) array containing data with ‘float’ type. [forward,
backward, sideways] static friction coefficients.

3.11. External Forces / Interactions 45

PyElastica, Release 0.2.4

kinetic_mu_array: numpy.ndarray 1D (3,) array containing data with ‘float’ type. [forward,
backward, sideways] kinetic friction coefficients.

__init__(k, nu, plane_origin, plane_normal, slip_velocity_tol, static_mu_array, kinetic_mu_array)

Parameters

k: float Stiffness coefficient between the plane and the rod-like object.

nu: float Dissipation coefficient between the plane and the rod-like object.

plane_origin: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Origin
of the plane.

plane_normal: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. The
normal vector of the plane.

slip_velocity_tol: float Velocity tolerance to determine if the element is slipping or not.

static_mu_array: numpy.ndarray 1D (3,) array containing data with ‘float’ type. [forward,
backward, sideways] static friction coefficients.

kinetic_mu_array: numpy.ndarray 1D (3,) array containing data with ‘float’ type. [for-
ward, backward, sideways] kinetic friction coefficients.

class elastica.interaction.InteractionPlane(k, nu, plane_origin, plane_normal)
The interaction plane class computes the plane reaction force on a rod-like object. For more details regarding
the contact module refer to Eqn 4.8 of Gazzola et al. RSoS (2018).

Attributes

k: float Stiffness coefficient between the plane and the rod-like object.

nu: float Dissipation coefficient between the plane and the rod-like object.

plane_origin: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Origin of
the plane.

plane_normal: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. The nor-
mal vector of the plane.

surface_tol: float Penetration tolerance between the plane and the rod-like object.

__init__(k, nu, plane_origin, plane_normal)

Parameters

k: float Stiffness coefficient between the plane and the rod-like object.

nu: float Dissipation coefficient between the plane and the rod-like object.

plane_origin: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Origin
of the plane.

plane_normal: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. The
normal vector of the plane.

class elastica.interaction.SlenderBodyTheory(dynamic_viscosity)
This slender body theory class is for flow-structure interaction problems. This class applies hydrodynamic forces
on the body using the slender body theory given in Eq. 4.13 of Gazzola et al. RSoS (2018).

Attributes

dynamic_viscosity: float Dynamic viscosity of the fluid.

46 Chapter 3. Contributing

PyElastica, Release 0.2.4

__init__(dynamic_viscosity)

Parameters

dynamic_viscosity [float] Dynamic viscosity of the fluid.

3.12 Connections / Contact / Joints

Module containing joint classes to connect multiple rods together.

3.12.1 Description

Available Connection/Contact/Joints

FreeJoint This free joint class is the base class for all joints.
ExternalContact This class is for applying contact forces between rod-

cylinder and rod-rod.
FixedJoint The fixed joint class restricts the relative movement and

rotation between two nodes and elements by applying
restoring forces and torques.

HingeJoint This hinge joint class constrains the relative movement
and rotation (only one axis defined by the user) between
two nodes and elements (chosen by the user) by applying
restoring forces and torques.

SelfContact This class is modeling self contact of rod.

Compatibility

Connection / Contact / Joints Rod Rigid Body
FreeJoint
ExternalContact
FixedJoint
HingeJoint
SelfContact

3.12. Connections / Contact / Joints 47

PyElastica, Release 0.2.4

3.12.2 Built-in Connection / Contact / Joint

class elastica.joint.FreeJoint(k, nu)
This free joint class is the base class for all joints. Free or spherical joints constrains the relative movement
between two nodes (chosen by the user) by applying restoring forces. For implementation details, refer to Zhang
et al. Nature Communications (2019).

Notes

Every new joint class must be derived from the FreeJoint class.

Attributes

k: float Stiffness coefficient of the joint.

nu: float Damping coefficient of the joint.

__init__(k, nu)

Parameters

k: float Stiffness coefficient of the joint.

nu: float Damping coefficient of the joint.

class elastica.joint.ExternalContact(k, nu, velocity_damping_coefficient=0, friction_coefficient=0)
This class is for applying contact forces between rod-cylinder and rod-rod. If you are want to apply contact
forces between rod and cylinder, first system is always rod and second system is always cylinder. In addition to
the contact forces, user can define apply friction forces between rod and cylinder that are in contact. For details on
friction model refer to this paper. TODO: Currently friction force is between rod-cylinder, in future implement
friction forces between rod-rod.

Notes

The velocity_damping_coefficient is set to a high value (e.g. 1e4) to minimize slip and simulate stiction (static
friction), while friction_coefficient corresponds to the Coulombic friction coefficient.

Examples

How to define contact between rod and cylinder.

>>> simulator.connect(rod, cylidner).using(
... ExternalContact,
... k=1e4,
... nu=10,
... velocity_damping_coefficient=10,
... kinetic_friction_coefficient=10,
...)

How to define contact between rod and rod.

>>> simulator.connect(rod, rod).using(
... ExternalContact,
... k=1e4,

(continues on next page)

48 Chapter 3. Contributing

https://www10.cs.fau.de/publications/papers/2011/Preclik_Multibody_Ext_Abstr.pdf

PyElastica, Release 0.2.4

(continued from previous page)

... nu=10,

...)

__init__(k, nu, velocity_damping_coefficient=0, friction_coefficient=0)

Parameters

k [float] Contact spring constant.

nu [float] Contact damping constant.

velocity_damping_coefficient [float] Velocity damping coefficient between rigid-body and
rod contact is used to apply friction force in the slip direction.

friction_coefficient [float] For Coulombic friction coefficient for rigid-body and rod contact.

class elastica.joint.FixedJoint(k, nu, kt)
The fixed joint class restricts the relative movement and rotation between two nodes and elements by applying
restoring forces and torques. For implementation details, refer to Zhang et al. Nature Communications (2019).

Attributes

k: float Stiffness coefficient of the joint.

nu: float Damping coefficient of the joint.

kt: float Rotational stiffness coefficient of the joint.

__init__(k, nu, kt)

Parameters

k: float Stiffness coefficient of the joint.

nu: float Damping coefficient of the joint.

kt: float Rotational stiffness coefficient of the joint.

class elastica.joint.HingeJoint(k, nu, kt, normal_direction)
This hinge joint class constrains the relative movement and rotation (only one axis defined by the user) between
two nodes and elements (chosen by the user) by applying restoring forces and torques. For implementation
details, refer to Zhang et. al. Nature Communications (2019).

Attributes

k: float Stiffness coefficient of the joint.

nu: float Damping coefficient of the joint.

kt: float Rotational stiffness coefficient of the joint.

normal_direction: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type. Con-
straint rotation direction.

__init__(k, nu, kt, normal_direction)

Parameters

k: float Stiffness coefficient of the joint.

nu: float Damping coefficient of the joint.

kt: float Rotational stiffness coefficient of the joint.

3.12. Connections / Contact / Joints 49

PyElastica, Release 0.2.4

normal_direction: numpy.ndarray 2D (dim, 1) array containing data with ‘float’ type.
Constraint rotation direction.

class elastica.joint.SelfContact(k, nu)
This class is modeling self contact of rod.

__init__(k, nu)

Parameters

k: float Stiffness coefficient of the joint.

nu: float Damping coefficient of the joint.

3.13 Callback Functions

Module contains callback classes to save simulation data for rod-like objects

3.13.1 Description

The frequency at which you have your callback function save data will depend on what information you need from the
simulation. Excessive call backs can cause performance penalties, however, it is rarely necessary to make call backs
at a frequency that this becomes a problem. We have found that making a call back roughly every 100 iterations has a
negligible performance penalty.

Currently, all data saved from call back functions is saved in memory. If you have many rods or are running for a long
time, you may want to consider editing the call back function to write the saved data to disk so you do not run out of
memory during the simulation.

CallBackBaseClass This is the base class for callbacks for rod-like objects.
ExportCallBack ExportCallback is an example callback class to demon-

strate how to export rod-data into data file.
MyCallBack MyCallBack class is derived from the base callback

class.

3.13.2 Built-in Constraints

class elastica.callback_functions.CallBackBaseClass
This is the base class for callbacks for rod-like objects.

Notes

Every new callback class must be derived from CallBackBaseClass.

__init__()
CallBackBaseClass does not need any input parameters.

class elastica.callback_functions.ExportCallBack(step_skip, filename, directory, method,
initial_file_count=0,
file_save_interval=100000000.0)

ExportCallback is an example callback class to demonstrate how to export rod-data into data file.

50 Chapter 3. Contributing

PyElastica, Release 0.2.4

If one wants to customize the saving data, we recommend to override make_callback method.

Attributes

AVAILABLE_METHOD Supported method to save the file. We recommend binary save to
maintain the tensor structure of data.

FILE_SIZE_CUTOFF Maximum buffer size for each file. If the buffer size exceed, new file is
created. Actual size of the file is expected to be marginally larger.

__init__(step_skip, filename, directory, method, initial_file_count=0, file_save_interval=100000000.0)

Parameters

step_skip [int] Interval to collect simulation data into buffer. The data will be collected at
every dt * step_skip interval.

filename [str] Name of the file without extension. The extension will be determined depend
on the method. File will be saved with the name <filename>_<number>.<extension>.

directory [str] Directory to save the file. If directory doesn’t exist, it will be created. During
the save, any existing files in this directory could be overwritten.

method [str] Method name. Only the name in AVAILABLE_METHOD is allowed.

initial_file_count [int] Initial file count index that will be appended

file_save_interval [int] Interval, in steps, to export/save collected buffer as file. (default =
1e8)

class elastica.callback_functions.MyCallBack(step_skip, callback_params)
MyCallBack class is derived from the base callback class. This is just an example of a callback class, this class
as an example/template to write new call back classes in your client file.

Attributes

sample_every: int Collect data using make_callback method every sampling step.

callback_params: dict Collected callback data is saved in this dictionary.

__init__(step_skip, callback_params)

Parameters

step_skip: int Collect data using make_callback method every step_skip step.

callback_params: dict Collected data is saved in this dictionary.

3.14 Time steppers

Symplectic time steppers and concepts for integrating the kinematic and dynamic equations of rod-like objects.

class elastica.timestepper.symplectic_steppers.PositionVerlet
Position Verlet symplectic time stepper class, which includes methods for second-order position Verlet.

class elastica.timestepper.symplectic_steppers.PEFRL
Position Extended Forest-Ruth Like Algorithm of I.M. Omelyan, I.M. Mryglod and R. Folk, Computer Physics
Communications 146, 188 (2002), http://arxiv.org/abs/cond-mat/0110585

3.14. Time steppers 51

http://arxiv.org/abs/cond-mat/0110585

PyElastica, Release 0.2.4

3.15 Simulator

3.15.1 Base System

Basic coordinating for multiple, smaller systems that have an independently integrable interface (i.e. works with sym-
plectic or explicit routines timestepper.py.)

class elastica.wrappers.base_system.BaseSystemCollection
Base System for simulator classes. Every simulation class written by the user must be derived from the BaseSys-
temCollection class; otherwise the simulation will proceed.

Attributes

allowed_sys_types: tuple Tuple of allowed type rod-like objects. Here use a base class for ob-
jects, i.e. RodBase.

_systems: list List of rod-like objects.

finalize()
This method finalizes the simulator class. When it is called, it is assumed that the user has appended all
rod-like objects to the simulator as well as all boundary conditions, callbacks, etc., acting on these rod-like
objects. After the finalize method called, the user cannot add new features to the simulator class.

3.15.2 CallBacks

Provides the callBack interface to collect data over time (see callback_functions.py).

class elastica.wrappers.callbacks.CallBacks
CallBacks class is a wrapper for calling callback functions, set by the user. If the user wants to collect data from
the simulation, the simulator class has to be derived from the CallBacks class.

Attributes

_callback_list: list List of call back classes defined for rod-like objects.

collect_diagnostics(system)
This method calls user-defined call-back classes for a user-defined system or rod-like object. You need to
input the system or rod-like object that you want to collect data from.

Parameters

system: object System is a rod-like object.

Returns

3.15.3 Connect

Provides the connections interface to connect entities (rods, rigid bodies) using joints (see joints.py).

class elastica.wrappers.connections.Connections
The Connections class is a wrapper for connecting rod-like objects using joints selected by the user. To connect
two rod-like objects, the simulator class must be derived from the Connections class.

Attributes

_connections: list List of joint classes defined for rod-like objects.

52 Chapter 3. Contributing

PyElastica, Release 0.2.4

connect(first_rod, second_rod, first_connect_idx=None, second_connect_idx=None)
This method connects two rod-like objects using the selected joint class. You need to input the two rod-like
objects that are to be connected as well as set the element indexes of these rods where the connection occurs.

Parameters

first_rod [object] Rod-like object

second_rod [object] Rod-like object

first_connect_idx [int] Index of first rod for joint.

second_connect_idx [int] Index of second rod for joint.

Returns

3.15.4 Constraints

Provides the constraints interface to enforce displacement boundary conditions (see boundary_conditions.py).

class elastica.wrappers.constraints.Constraints
The Constraints class is a wrapper for enforcing displacement boundary conditions. To enforce boundary condi-
tions on rod-like objects, the simulator class must be derived from Constraints class.

Attributes

_constraints: list List of boundary condition classes defined for rod-like objects.

constrain(system)
This method enforces a displacement boundary conditions to the relevant user-defined system or rod-like
object. You must input the system or rod-like object that you want to enforce boundary condition on.

Parameters

system: object System is a rod-like object.

Returns

3.15.5 Forcing

Provides the forcing interface to apply forces and torques to rod-like objects (external point force, muscle torques, etc).

class elastica.wrappers.forcing.Forcing
The Forcing class is a wrapper for applying boundary conditions that consist of applied external forces. To apply
forcing on rod-like objects, the simulator class must be derived from the Forcing class.

Attributes

_ext_forces_torques: list List of forcing class defined for rod-like objects.

add_forcing_to(system)
This method applies external forces and torques on the relevant user-defined system or rod-like object. You
must input the system or rod-like object that you want to apply external forces and torques on.

Parameters

system: object System is a rod-like object.

Returns

3.15. Simulator 53

PyElastica, Release 0.2.4

3.16 Utility Functions

Here, we provide some useful functions that we often use along with elastica.

3.16.1 Transformations

Rotation interface functions

elastica.transformations.inv_skew_symmetrize(matrix_collection)
Safe wrapper around inv_skew_symmetrize that does checking and formatting on type of matrix_collection using
format_matrix_shape function.

Parameters

matrix_collection: numpy.ndarray

Returns

elastica.transformations.rotate(matrix, scale, axis)
This function takes single or multiple frames as matrix. Then rotates these frames around a single axis for all
frames, or can rotate each frame around its own rotation axis as defined by user. Scale determines how much
frames rotates around this axis.

matrix: minimum shape = dim**2x1, supports shape = 3x3xn axis: minimum dim = 3x1, 1x3, supports dim =
3xn, nx3 scale: minimum float, supports 1D vectors also dim = n

3.16.2 Math

Quadrature and difference kernels

elastica._calculus.position_difference_kernel(vector)
This function computes difference between elements of a batch vector.

Parameters

vector: numpy.ndarray 2D (dim, blocksize) array containing data with ‘float’ type.

Returns

result: numpy.ndarray 2D (dim, blocksize-1) array containing data with ‘float’ type.

Notes

Micro benchmark results showed that for a block size of 100, using timeit Python version: 3.29 µs ± 767 ns per
loop This version: 840 ns ± 14.5 ns per loop

elastica._calculus.position_average(vector)
This function computes the average between elements of a vector.

Parameters

vector [numpy.ndarray] 1D (blocksize) array containing data with ‘float’ type.

Returns

result: numpy.ndarray 1D (blocksize-1) array containing data with ‘float’ type.

54 Chapter 3. Contributing

PyElastica, Release 0.2.4

Notes

Micro benchmark results showed that for a block size of 100, using timeit Python version: 2.37 µs ± 764 ns per
loop This version: 713 ns ± 3.69 ns per loop

elastica._calculus.quadrature_kernel(array_collection)
Simple trapezoidal quadrature rule with zero at end-points, in a dimension agnostic way

Parameters

array_collection [numpy.ndarray] 2D (dim, blocksize) array containing data with ‘float’ type.

Returns

result: numpy.ndarray 2D (dim, blocksize+1) array containing data with ‘float’ type.

Notes

Micro benchmark results, for a block size of 100, using timeit Python version: 8.14 µs ± 1.42 µs per loop This
version: 781 ns ± 18.3 ns per loop

elastica._calculus.difference_kernel(array_collection)
This function does differentiation.

Parameters

array_collection [numpy.ndarray] 2D (dim, blocksize) array containing data with ‘float’ type.

Returns

result: numpy.ndarray 2D (dim, blocksize-1) array containing data with ‘float’ type.

Notes

Micro benchmark results showed that for a block size of 100, using timeit Python version: 9.07 µs ± 2.15 µs per
loop This version: 952 ns ± 91.1 ns per loop

elastica._calculus.quadrature_kernel_for_block_structure(array_collection, ghost_idx)
Simple trapezoidal quadrature rule with zero at end-points, in a dimension agnostic way. This form specifically
for the block structure implementation and there is a reset function call, to reset ghosts.

Parameters

array_collection [numpy.ndarray] 2D (dim, blocksize) array containing data with ‘float’ type.

ghost_idx [numpy.ndarray] 1D (n_ghost) array containing data with ‘int’ type.

Returns

result: numpy.ndarray 2D (dim, blocksize+1) array containing data with ‘float’ type.

3.16. Utility Functions 55

PyElastica, Release 0.2.4

Notes

Micro benchmark results, for a block size of 100, using timeit Python version: 8.21 µs per loop This version:
1.03 µs per loop

User should use this function with extreme care, since this function is rewritten for block structure.

elastica._calculus.difference_kernel_for_block_structure(array_collection, ghost_idx)
This function does the differentiation, for Cosserat rod model equations. This form specifically for the block
structure implementation and there is a reset function call, to reset ghosts.

Parameters

array_collection [numpy.ndarray] 2D (dim, blocksize) array containing data with ‘float’ type.

ghost_idx [numpy.ndarray] 1D (n_ghost) array containing data with ‘int’ type.

Returns

result: numpy.ndarray 2D (dim, blocksize-1) array containing data with ‘float’ type.

Notes

Micro benchmark results showed that for a block size of 100, using timeit Python version: 7.1 µs per loop This
version: 1.01 µs per loop

User should use this function with extreme care, since this function is rewritten for block structure.

Convenient linear algebra kernels

elastica._linalg.levi_civita_tensor(dim)

Parameters

dim

Returns

Rotation kernels

3.16.3 Miscellaneous

Handy utilities

elastica.utils.isqrt(num)
Efficiently computes sqrt for integer values

Dropin replacement for python3.8’s isqrt function Credits : https://stackoverflow.com/a/53983683

Parameters

num [int, input]

Returns

sqrt_num [int, rounded down sqrt of num]

56 Chapter 3. Contributing

https://stackoverflow.com/a/53983683

PyElastica, Release 0.2.4

Notes

• Doesn’t handle edge-cases of negative numbers by design

• Doesn’t type-check for integers by design, although it is hinted at

Examples

Return type int

3.17 Localized Force and Torque

Originated by the investigation in the issue #39

3.17.1 Discussion

In elastica, a force is applied on a node while a torque is applied on an element. For example, a localized force
EndpointForce is applied only on a node. However, we found that adding additional torque on a neighboring elements,
such that the torque represent a local moment induced by the point-force, could yield better convergence. We haven’t
found any evidence (yet) that this actually changes the steady-state configuration and kinematics, since it is two different
implementation of the same point-load. We suspect the improvement by adding additional torque is due to explicitly
giving the force-boundary condition that match the final internal-stress state.

3.17.2 Comparison

Factoring the additional-torque on a neighboring element leads to slightly better error estimates for the Timoshenko
beam example. The results are condensed here. With new implementation, we achieved the same error with less
number of discretization, but it also requires additional torque computation.

3.17.3 Modified Implementation

class EndpointForcesWithTorques(NoForces):
"""
This class applies constant forces on the endpoint nodes.
"""

def __init__(self, end_force, ramp_up_time=0.0):
"""

Parameters

start_force: numpy.ndarray

2D (dim, 1) array containing data with 'float' type.
Force applied to first node of the rod-like object.

end_force: numpy.ndarray
2D (dim, 1) array containing data with 'float' type.
Force applied to last node of the rod-like object.

(continues on next page)

3.17. Localized Force and Torque 57

https://github.com/GazzolaLab/PyElastica/issues/39

PyElastica, Release 0.2.4

(continued from previous page)

ramp_up_time: float
Applied forces are ramped up until ramp up time.

"""
self.end_force = end_force
assert ramp_up_time >= 0.0
self.ramp_up_time = ramp_up_time

def apply_forces(self, system, time=0.0):
factor = min(1.0, time / self.ramp_up_time)
self.external_forces[..., -1] += self.end_force * factor

def apply_torques(self, system, time: np.float64 = 0.0):
factor = min(1.0, time / self.ramp_up_time)
arm_length = system.lengths[...,-1]
director = system.director_collection[..., -1]
self.external_torques[..., -1] += np.cross(

[0.0, 0.0, 0.5 * arm_length], director @ self.end_force
)

3.18 Code Design: Mixin and Composition

Elastica package follows Mixin and composition design patterns that may be unfamiliar to users. Here is a collection
of references that introduce the package design.

3.18.1 References

• stackoverflow discussion on Mixin

• example of Mixin: python collections

3.19 Hackathon Readme

NCSA-NVIDIA AI Hackathon held at the University of Illinois from March 7-8 2020.

3.19.1 Problem Statement

The objective is to train a model to move a (cyber)-octopus with two soft arms and a head to reach a target location, and
then grab an object. The octopus is modeled as an assembly of Cosserat rods and is activated by muscles surrounding
its arms. Input to the mechanical model is the activation signals to the surrounding muscles, which causes it to contract,
thus moving the arms. The output of the model comes from the octopus’ environment. The mechanical model will be
provided both for the octopus and its interaction with its environment. The goal is to find the correct muscle activation
signals that make the octopus crawl to reach the target location and then make one arm to grab the object.

58 Chapter 3. Contributing

https://stackoverflow.com/questions/533631/what-is-a-mixin-and-why-are-they-useful
https://docs.python.org/dev/library/collections.abc.html

PyElastica, Release 0.2.4

3.19.2 Progression of specific goals

These goals build on each other, you need to successfully accomplish all prior goals to get credit for later goals.

1) Make octopus crawl towards some direction. (5 points)

2) Make your octopus crawl to the target location. (7.5 points)

3) Make octopus to move the object using its arms. (7.5 points)

4) Have your octopus grab the object by wrapping one arm around the object. (10 points)

5) Make your octopus return to its starting location with the object. (20 points)

6) Generalize your policy to perform these tasks for an arbitrarily located object. (50 points)

3.19.3 Problem Context

Octopuses have flexible limbs made up of muscles with no internal bone structure. These limbs, know as muscular
hydrostats, have an almost infinite number of degrees of freedom, allowing an octopus to perform complex actions with
its arms, but also making them difficult to mathematically model. Attempts to model octopus arms are motivated not
only by a desire to understand them biologically, but also to adapt their control ability and decision making processes to
the rapidly developing field of soft robotics. We have developed a simulation package Elastica that models flexible 1-d
rods, which can be used to represent octopus arms as a long, slender rod. We now want to learn methods for controlling
these arms.

You are being provided with a model of an octopus that consists of two arms connected by a head. Each arm can
be controlled independently. These arms are actuated through the contraction of muscles in the arms. This muscle
activation produces a torque profile along the arm, resulting in movement of the arm. The arms interact with the
ground through friction. Your goal is to teach the octopus to crawl towards an object, grab it, and bring it back to where
the octopus started.

3.19.4 Controlling octopus arms with hierarchical basis functions

For this problem, we abstract the activation of the octopus muscles to the generation of a torque profile defined by the
activation of a set of hierarchical radial basis function. Here we are using Gaussian basis functions.

3.19. Hackathon Readme 59

PyElastica, Release 0.2.4

There are three levels of these basis functions, with 1 basis function in the first level, 2 in the second level and 4 in the
third, leading to 7 basis functions in set. These levels have different maximum levels of activation. The lower levels
have larger magnitudes than the higher levels, meaning they represent bulk motion of the rod while the higher levels
allow finer control of the rod along the interval. In the code, the magnitude of each level will be fixed but you can
choose the amount of activation at each level by setting the activation level between -1 and 1.

There are two bending modes (in the normal and binormal directions) and a twisting mode (in the tangent direction),
so we define torques in these three different directions and independently for each arm. This yields six different sets of
basis functions that can be activated for a total of 42 inputs.

3.19.5 Overview of provided Elastica code

We are providing you the Elastica software package which is written in Python. Elastica simulates the dynamics and
kinematics of 1-d slender rods. We have set up the model for you such that you do not need to worry about the details
of the model, only the activation patterns of the muscle. In the provided examples/ArmWithBasisFunctions/
two_arm_octopus_ai_imp.py file you will import the Environment class which will define and setup the simula-
tion.

Environment has three relevant functions:

• Environment.reset(self): setups and initializes the simulation environment. Call this prior to running any
simulations.

• Environment.step(self, activation_array_list, time): takes one timestep for muscle activations
defined in activation_array_list.

• Environment.post_processing(self, filename_video): Makes 3D video based on saved data from
simulation. Requires ffmpeg.
We do not suggest changing Environment as it may cause unintended consequences to the simulation.

You will want to work within main() to interface with the simulations and develop your learning model. In main(),
the first thing you need to define is the length of your simulation and initialize the environment. final_time is the
length of time that your simulation will run unless exited early. You want to give your octopus enough time to complete
the task, but too much time will lead to excessively long simulation times.

Set simulation final time
final_time = 10.0

Initialize the environment
target_position = np.array([-0.4, 0.0, 0.5])
env = Environment(final_time, target_position, COLLECT_DATA_FOR_POSTPROCESSING=True)
total_steps, systems = env.reset()

With your system initialized, you are now ready to perform the simulation. To perform the simulation there are two
steps:

60 Chapter 3. Contributing

PyElastica, Release 0.2.4

1) Evaluate the reward function and define the basis function activations

2) Perform time step

There is also a user defined stopping condition. When met, this will immediately end the simulation. This can be useful
to end the simulation if the octopus successfully complete the task early, or has a sufficiently low reward function that
there is no point continuing the simulation.

for i_sim in tqdm(range(total_steps)):
""" Learning loop """
if i_sim % 200:
""" Add your learning algorithm here to define activation """
This will be based on your observations of the system and
evaluation of your reward function.
shearable_rod = systems[0]
rigid_body = systems[1]
reward = reward_function()
activation = segment_activation_function()

""" Perform time step """
time, systems, done = env.step(activation, time)

""" User defined condition to exit simulation loop """
done = user_defined_condition_function(reward, systems, time)
if done:

break

The state of the octopus is available in shearable_rod. The octopus consists of a series of 121 nodes. Nodes 0-49
relate to one arm, nodes 50-70 relate to the head, and nodes 71-120 relate to the second arm. shearable_rod.
position_collection returns an array with entries relating to the position of each node. The state of the target
object is available in rigid_body.

It is important to properly define the activation function. It consists of a list of lists defining the activation of the two
arms in each of the the three modes of deformation. The activation function should be a list with three entries for the
three modes of deformation. Each of these entries is in turn a list with two entries, which are arrays of the basis function
activations for the two arms.

activation = [
[arm_1_normal, arm_2_normal], # activation in normal direction
[arm_1_binormal, arm_2_binormal], # activation in binormal direction
[arm_1_tangent, arm_2_tangent], # activation in tangent direction
]

Each activation array has 7 entries that relate to the activation of different basis functions. The ordering goes from the
top level to the bottom level of the hierarchy. Each entry can vary from -1 to 1.

activation_array[0] – One top level muscle segment
activation_array[1:3] – Two mid level muscle segment
activation_array[3:7] – Four bottom level muscle segment

3.19. Hackathon Readme 61

PyElastica, Release 0.2.4

3.19.6 A few practical notes

1) To save a video of the octopus with Environment.post_processing(), you need to install ffmeg. You can
download and install it here.

2) The timestep size is set to 40 s. This is necessary to keep the simulation stable, however, you may not need to
update your muscle activations that often. Varying the learning time step will change how often your octopus
updates its behaviour.

3) There is a 15-20 second startup delay while the simulation is initialized. This is a one time cost whenever
the Python script is run and resetting the simulation using .rest() does not incur this delay for subsequent
simulations.

4) We suggest installing requirements.txt and optional-requirements.txt, to run Elastica without any
problem.

3.20 Indices and tables

• genindex

• modindex

• search

62 Chapter 3. Contributing

https://www.ffmpeg.org/

PYTHON MODULE INDEX

e
elastica._calculus, 54
elastica._linalg, 56
elastica._rotations, 56
elastica.boundary_conditions, 37
elastica.callback_functions, 50
elastica.external_forces, 41
elastica.interaction, 42
elastica.joint, 47
elastica.rigidbody.cylinder, 37
elastica.rigidbody.rigid_body, 37
elastica.rigidbody.sphere, 37
elastica.rod.cosserat_rod, 30
elastica.rod.knot_theory, 33
elastica.rod.rod_base, 29
elastica.timestepper.symplectic_steppers, 51
elastica.transformations, 54
elastica.utils, 56
elastica.wrappers.base_system, 52
elastica.wrappers.callbacks, 52
elastica.wrappers.connections, 52
elastica.wrappers.constraints, 53
elastica.wrappers.forcing, 53

63

PyElastica, Release 0.2.4

64 Python Module Index

INDEX

Symbols
__init__() (elastica.boundary_conditions.FixedConstraint

method), 40
__init__() (elastica.boundary_conditions.HelicalBucklingBC

method), 40
__init__() (elastica.boundary_conditions.OneEndFixedBC

method), 39
__init__() (elastica.callback_functions.CallBackBaseClass

method), 50
__init__() (elastica.callback_functions.ExportCallBack

method), 51
__init__() (elastica.callback_functions.MyCallBack

method), 51
__init__() (elastica.external_forces.EndpointForces

method), 43
__init__() (elastica.external_forces.EndpointForcesSinusoidal

method), 45
__init__() (elastica.external_forces.GravityForces

method), 43
__init__() (elastica.external_forces.MuscleTorques

method), 44
__init__() (elastica.external_forces.NoForces

method), 42
__init__() (elastica.external_forces.UniformForces

method), 43
__init__() (elastica.external_forces.UniformTorques

method), 43
__init__() (elastica.interaction.AnisotropicFrictionalPlane

method), 46
__init__() (elastica.interaction.InteractionPlane

method), 46
__init__() (elastica.interaction.SlenderBodyTheory

method), 46
__init__() (elastica.joint.ExternalContact method), 49
__init__() (elastica.joint.FixedJoint method), 49
__init__() (elastica.joint.FreeJoint method), 48
__init__() (elastica.joint.HingeJoint method), 49
__init__() (elastica.joint.SelfContact method), 50

A
add_forcing_to() (elastica.wrappers.forcing.Forcing

method), 53

AnisotropicFrictionalPlane (class in elas-
tica.interaction), 45

B
BaseSystemCollection (class in elas-

tica.wrappers.base_system), 52

C
CallBackBaseClass (class in elas-

tica.callback_functions), 50
CallBacks (class in elastica.wrappers.callbacks), 52
collect_diagnostics() (elas-

tica.wrappers.callbacks.CallBacks method),
52

compute_bending_energy() (elas-
tica.rod.cosserat_rod.CosseratRod method),
33

compute_link() (elas-
tica.rod.cosserat_rod.CosseratRod method),
33

compute_link() (elastica.rod.knot_theory.KnotTheory
method), 35

compute_link() (in module elastica.rod.knot_theory),
35

compute_position_center_of_mass() (elas-
tica.rigidbody.rigid_body.RigidBodyBase
method), 37

compute_position_center_of_mass() (elas-
tica.rod.cosserat_rod.CosseratRod method),
33

compute_rotational_energy() (elas-
tica.rigidbody.rigid_body.RigidBodyBase
method), 37

compute_rotational_energy() (elas-
tica.rod.cosserat_rod.CosseratRod method),
33

compute_shear_energy() (elas-
tica.rod.cosserat_rod.CosseratRod method),
33

compute_translational_energy() (elas-
tica.rigidbody.rigid_body.RigidBodyBase
method), 37

65

PyElastica, Release 0.2.4

compute_translational_energy() (elas-
tica.rod.cosserat_rod.CosseratRod method),
33

compute_twist() (elas-
tica.rod.cosserat_rod.CosseratRod method),
33

compute_twist() (elas-
tica.rod.knot_theory.KnotTheory method),
34

compute_twist() (in module elastica.rod.knot_theory),
35

compute_velocity_center_of_mass() (elas-
tica.rod.cosserat_rod.CosseratRod method),
33

compute_writhe() (elas-
tica.rod.cosserat_rod.CosseratRod method),
33

compute_writhe() (elas-
tica.rod.knot_theory.KnotTheory method),
34

compute_writhe() (in module elas-
tica.rod.knot_theory), 36

connect() (elastica.wrappers.connections.Connections
method), 52

Connections (class in elastica.wrappers.connections),
52

constrain() (elastica.wrappers.constraints.Constraints
method), 53

constrain_rates() (elas-
tica.boundary_conditions.ConstraintBase
method), 39

constrain_values() (elas-
tica.boundary_conditions.ConstraintBase
method), 39

constrained_director_idx (elas-
tica.boundary_conditions.ConstraintBase
property), 39

constrained_position_idx (elas-
tica.boundary_conditions.ConstraintBase
property), 38

ConstraintBase (class in elas-
tica.boundary_conditions), 38

Constraints (class in elastica.wrappers.constraints), 53
CosseratRod (class in elastica.rod.cosserat_rod), 30
Cylinder (class in elastica.rigidbody.cylinder), 37

D
difference_kernel() (in module elastica._calculus),

55
difference_kernel_for_block_structure() (in

module elastica._calculus), 56

E
elastica._calculus

module, 54
elastica._linalg

module, 56
elastica._rotations

module, 56
elastica.boundary_conditions

module, 37
elastica.callback_functions

module, 50
elastica.external_forces

module, 41
elastica.interaction

module, 42
elastica.joint

module, 47
elastica.rigidbody.cylinder

module, 37
elastica.rigidbody.rigid_body

module, 37
elastica.rigidbody.sphere

module, 37
elastica.rod.cosserat_rod

module, 30
elastica.rod.knot_theory

module, 33
elastica.rod.rod_base

module, 29
elastica.timestepper.symplectic_steppers

module, 51
elastica.transformations

module, 54
elastica.utils

module, 56
elastica.wrappers.base_system

module, 52
elastica.wrappers.callbacks

module, 52
elastica.wrappers.connections

module, 52
elastica.wrappers.constraints

module, 53
elastica.wrappers.forcing

module, 53
EndpointForces (class in elastica.external_forces), 42
EndpointForcesSinusoidal (class in elas-

tica.external_forces), 44
ExportCallBack (class in elastica.callback_functions),

50
ExternalContact (class in elastica.joint), 48

F
finalize() (elastica.wrappers.base_system.BaseSystemCollection

method), 52

66 Index

PyElastica, Release 0.2.4

FixedConstraint (class in elas-
tica.boundary_conditions), 39

FixedJoint (class in elastica.joint), 49
Forcing (class in elastica.wrappers.forcing), 53
FreeBC (class in elastica.boundary_conditions), 39
FreeJoint (class in elastica.joint), 48
FreeRod (class in elastica.boundary_conditions), 41

G
GravityForces (class in elastica.external_forces), 43

H
HelicalBucklingBC (class in elas-

tica.boundary_conditions), 40
HingeJoint (class in elastica.joint), 49

I
InteractionPlane (class in elastica.interaction), 46
inv_skew_symmetrize() (in module elas-

tica.transformations), 54
isqrt() (in module elastica.utils), 56

K
KnotTheory (class in elastica.rod.knot_theory), 33
KnotTheoryCompatibleProtocol (class in elas-

tica.rod.knot_theory), 33

L
levi_civita_tensor() (in module elastica._linalg),

56

M
module

elastica._calculus, 54
elastica._linalg, 56
elastica._rotations, 56
elastica.boundary_conditions, 37
elastica.callback_functions, 50
elastica.external_forces, 41
elastica.interaction, 42
elastica.joint, 47
elastica.rigidbody.cylinder, 37
elastica.rigidbody.rigid_body, 37
elastica.rigidbody.sphere, 37
elastica.rod.cosserat_rod, 30
elastica.rod.knot_theory, 33
elastica.rod.rod_base, 29
elastica.timestepper.symplectic_steppers,

51
elastica.transformations, 54
elastica.utils, 56
elastica.wrappers.base_system, 52
elastica.wrappers.callbacks, 52

elastica.wrappers.connections, 52
elastica.wrappers.constraints, 53
elastica.wrappers.forcing, 53

MuscleTorques (class in elastica.external_forces), 43
MyCallBack (class in elastica.callback_functions), 51

N
NoForces (class in elastica.external_forces), 42

O
OneEndFixedBC (class in elastica.boundary_conditions),

39
OneEndFixedRod (class in elas-

tica.boundary_conditions), 41

P
PEFRL (class in elas-

tica.timestepper.symplectic_steppers), 51
position_average() (in module elastica._calculus), 54
position_difference_kernel() (in module elas-

tica._calculus), 54
PositionVerlet (class in elas-

tica.timestepper.symplectic_steppers), 51

Q
quadrature_kernel() (in module elastica._calculus),

55
quadrature_kernel_for_block_structure() (in

module elastica._calculus), 55

R
RigidBodyBase (class in elastica.rigidbody.rigid_body),

37
RodBase (class in elastica.rod.rod_base), 29
rotate() (in module elastica.transformations), 54

S
SelfContact (class in elastica.joint), 50
SlenderBodyTheory (class in elastica.interaction), 46
Sphere (class in elastica.rigidbody.sphere), 37
straight_rod() (elas-

tica.rod.cosserat_rod.CosseratRod class
method), 32

system (elastica.boundary_conditions.ConstraintBase
property), 38

U
UniformForces (class in elastica.external_forces), 43
UniformTorques (class in elastica.external_forces), 43

Index 67

	PyElastica
	Elastica++

	Community
	Contributing
	About
	Installation
	Instruction
	Dependencies

	Workflow
	Discretization
	Number of elements per rod
	Choosing your dx and dt
	Run time scaling

	Example Cases
	Axial Stretching
	Timoshenko
	Butterfly
	Helical Buckling
	Continuum Snake

	Binder Tutorials
	Visualization
	Matplotlib
	POVray
	Rhino
	VTK

	Rods
	Cosserat Rod
	Knot Theory (Mixin)

	Rigid Body
	Constraints
	Description
	Compatibility

	Examples
	Built-in Constraints

	External Forces / Interactions
	Description
	Compatibility

	Built-in External Forces
	Built-in Environment Interactions

	Connections / Contact / Joints
	Description
	Compatibility

	Built-in Connection / Contact / Joint

	Callback Functions
	Description
	Built-in Constraints

	Time steppers
	Simulator
	Base System
	CallBacks
	Connect
	Constraints
	Forcing

	Utility Functions
	Transformations
	Math
	Miscellaneous

	Localized Force and Torque
	Discussion
	Comparison
	Modified Implementation

	Code Design: Mixin and Composition
	References

	Hackathon Readme
	Problem Statement
	Progression of specific goals
	Problem Context
	Controlling octopus arms with hierarchical basis functions
	Overview of provided Elastica code
	A few practical notes

	Indices and tables

	Python Module Index
	Index

